written 6.5 years ago by | • modified 3.2 years ago |
Subject: Structure Analysis 2
Topic: Slope Diflection method
Difficulty: Hard
written 6.5 years ago by | • modified 3.2 years ago |
Subject: Structure Analysis 2
Topic: Slope Diflection method
Difficulty: Hard
written 6.5 years ago by |
1) FEM's (Fixed End Moments)
AB=Mab=0 (Because of no load at member AB)
AB=Mba=0 (Because of no load at member AB)
BC=Mbc=−wl8=−48∗48=−24KN.m
BC=Mcb=wl8=48∗48=24KN.m
CD=Mcd=0
CD=Mdc=0
[Assumed Sway always at right]
The Given frame is Sway Frame:
Assuming that the frame Sway by an amount '\gamma' towards right
2) Slop deflection equation:
Member AB:
Mab=0 {Frame Kase}
Mba=Mba−Mab2+3EIl(Qb−γl)
=0−02+3E(2I)6(Qb−γ6)
=EIQb−1EIγ6-----------(i)
Member BC:
Mbc=Mbc+2EIl(2Qb+Qc)
=−24+2E(2I)4(2Qc+Qb)
=−24+2EIQb+2EIQc ------------------(ii)
Mcb=Mcb+2EIl(2Qc+Qd−3γl)
=18+2EIQc+2EIQc -----------(iii)
Member CD:
Mcd=Mcd+2EIl(2Qc+Qd)
=0+2EI4(2Qc+0−3γ4)
=EIQc−38EIγ ------------------(iv)
Mdc=Mdc+2EIl(2Qd+Qc−3γl)
=0+2EI)4(0+Qc−3γ4)
=12EIQc−38EIγ ---------------------(v)
3) Apply Equilibrium Condition for joints:
Joint B:
Mba+Mbc=0
EIQb−16EIγ−24+2EIQb+EIQc=0
18EIQb+6EIQc−EIγ=144 -----------(I)
Joint C:
Mcb+Mcd=0
24+EIQb+2EIQc+EIQc−38EIγ=0
8EIQb+24EIQc−3EIγ=−192 -----------(II)
These are three unknown Qb,Qc & γ, where as equation are only two:
Letuscreate1morestructuralcondn
ΣMB=0
Mab+Mba−Ha∗6=0
Ha=Mab+Mba6 ---> (1)
ΣMC=0
Mcd+Mdc−Hd∗4=0
Hd=Mcd+Mdc4 ---> (2)
ΣFx=0
Ha+Hd ---> (3)
Mab+Mba6+Mcd+Mdc4=0
24EIQb+54EIQc−31EIγ=0 --------(III)
Solving all three equations we get:
EIQb=11.7671
EIQc=−13.7852
EIγ=−14.9030
5) Substituting value of EIQb,EIγ & EIQc in final moments are determined
Mab=0
Mba=11.7671−16(−14.9030)=14.25KN.m
Mbc=−24+2(11.7671)−13.7852=−14.25KN.m
Mcb=24+11.7671+2(−13.7852)=8.20KN.m
Mcd=−13.7852−38(−14.9030)=−8.20KN.m
Mdc=−1.30KN.m
6) BMD