written 6.1 years ago by | • modified 2.8 years ago |
Subject: Structure Analysis 2
Topic: Slope Diflection method
Difficulty: Hard
written 6.1 years ago by | • modified 2.8 years ago |
Subject: Structure Analysis 2
Topic: Slope Diflection method
Difficulty: Hard
written 6.1 years ago by |
1) FEM's (Fixed End Moments)
$AB = M_{ab} = 0$ (Because of no load at member AB)
$AB = M_{ba} = 0$ (Because of no load at member AB)
$BC = M_{bc} = \frac{-wl}{8} = \frac{-48*4}{8} = -24KN.m$
$BC = M_{cb} = \frac{wl}{8} = \frac{48*4}{8} = 24KN.m$
$CD = M_{cd} = 0$
$CD = M_{dc} = 0$
[Assumed Sway always at right]
The Given frame is Sway Frame:
Assuming that the frame Sway by an amount '\gamma' towards right
2) Slop deflection equation:
Member AB:
$M_{ab} = 0$ {Frame Kase}
$M_{ba} = M_{ba} - \frac{M_{ab}}{2} +\frac{3EI}{l}(Q_b - \frac{\gamma}{l})$
$=0 - \frac{0}{2} + \frac{3E(2I)}{6} (Q_b - \frac{\gamma}{6})$
$=EIQ_b - \frac{1EI \gamma}{6}$-----------(i)
Member BC:
$M_{bc} = M_{bc} + \frac{2EI}{l}(2Q_b + Q_c)$
$=-24 + \frac{2E(2I)}{4} (2Q_c + Q_b)$
$=-24 + 2EIQ_b + 2EIQ_c$ ------------------(ii)
$M_{cb} = M_{cb} + \frac{2EI}{l}(2Q_c + Q_d - \frac{3 \gamma}{l})$
$=18 + 2EIQ_c + 2EIQ_c$ -----------(iii)
Member CD:
$M_{cd} = M_{cd} + \frac{2EI}{l}(2Q_c + Q_d)$
$=0 + \frac{2EI}{4} (2Q_c + 0 - \frac{3 \gamma}{4})$
$=EIQ_c - \frac{3}{8} EI \gamma$ ------------------(iv)
$M_{dc} = M_{dc} + \frac{2EI}{l}(2Q_d + Q_c - \frac{3 \gamma}{l})$
$=0 + \frac{2EI)}{4} (0+ Q_c - \frac{3 \gamma}{4})$
$=\frac{1}{2}EIQ_c - \frac{3}{8} EI \gamma$ ---------------------(v)
3) Apply Equilibrium Condition for joints:
Joint B:
$M_{ba} + M_{bc} = 0$
$EIQ_b - \frac{1}{6}EI\gamma -24 + 2EIQ_b + EIQ_c = 0$
$18EIQ_b + 6EIQ_c - EI\gamma = 144$ -----------(I)
Joint C:
$M_{cb} + M_{cd} = 0$
$24 + EIQ_b + 2EIQ_c + EIQ_c - \frac{3}{8} EI\gamma = 0$
$8EIQ_b + 24EIQ_c - 3EI\gamma= -192$ -----------(II)
These are three unknown $Q_b, Q_c$ & $\gamma$, where as equation are only two:
$Let us create 1 more structural cond^n$
$ΣM_B =0$
$M_{ab} + M_{ba} - H_a*6 = 0$
$H_a = \frac{M_{ab} + M_{ba}}{6}$ ---> (1)
$ΣM_C =0$
$M_{cd} + M_{dc} - H_d*4 = 0$
$H_d = \frac{M_{cd} + M_{dc}}{4}$ ---> (2)
$ΣF_x = 0$
$H_a + H_d$ ---> (3)
$\frac{M_{ab} + M_{ba}}{6} + \frac{M_{cd} + M_{dc}}{4} =0$
$24 EIQ_b + 54EIQ_c - 31EI\gamma = 0$ --------(III)
Solving all three equations we get:
$EIQ_b = 11.7671$
$EIQ_c = -13.7852$
$EI\gamma = -14.9030$
5) Substituting value of $EIQ_b, EI\gamma$ & $EIQ_c$ in final moments are determined
$M_{ab} = 0$
$M_{ba} = 11.7671 - \frac{1}{6}(-14.9030) = 14.25 KN.m$
$M_{bc} = -24 + 2(11.7671) -13.7852 = -14.25 KN.m$
$M_{cb} =24 + 11.7671 + 2(-13.7852) = 8.20 KN.m$
$M_{cd} = -13.7852 - \frac{3}{8} (-14.9030) = -8.20KN.m$
$M_{dc} = -1.30 KN.m$
6) BMD