written 6.2 years ago by | • modified 2.9 years ago |
Subject: Structure Analysis 2
Topic: Slope Diflection method
Difficulty: Hard
written 6.2 years ago by | • modified 2.9 years ago |
Subject: Structure Analysis 2
Topic: Slope Diflection method
Difficulty: Hard
written 6.2 years ago by |
1) Fixed End moments(FEM's)
AB => $M_{ab} = \frac{-wl^2}{12} = \frac{-4*3^2}{12} = -3KN.m$
$M_{ba} = \frac{wl^2}{12} = \frac{4*3^2}{12} = 3KN.m$
BC => $M_{bc} = \frac{-wl^2}{12} = \frac{-5*4^2}{12} = -6.67KN.m$
$M_{cb} = \frac{wl^2}{12} = \frac{5*4^2}{12} = 6.67KN.m$
2) blop deflection equation:
we know that slope at A=$Q_a = 0$
and slope at B=$Q_b =0$
Span AB:
$M_{ab} = M_{ab} + \frac{2EI}{l} (2Q_a + Q_b)$
$= -3 + \frac{2EI}{3} (0+Q_b)$
$=-3 + \frac{2}{3} EIQ_B = -3 +0.67EIQ_B$--------------------(i)
$M_{ba} = M_{ba} + \frac{2EI}{l} (2Q_b + Q_a)$
$= 3 + \frac{2EI}{3} (2Q_a + 0)$
$=3+ \frac{4}{3} Q_b$
$=3+1.33EIQ_b$ ----------(ii)
Span BC:
$M_{bc} = M_{bc} + \frac{2EI}{l} (2Q_a + Q_c)$
$= -6.67 + \frac{2EI}{4} (2Q_a + 0)$
$= -6.67 + \frac{4}{4} Q_b$
$= -6.67 + EIQ_b$ ----------------(iii)
$M_{cb} = M_{cb} + \frac{2EI}{l} (2Q_c + Q_b)$
$= 6.67 + \frac{2EI}{4} (0+Q_b)$
$= 6.67 + 0.5EIQ_b$ ----------------(iv)
3) Apply Equilibrium Condition for joint:
Joint B:
$M_{ba} + M_{bc} = 0$
$3 + 1.33EIQ_b - 6.67 + EIQ_b = 0$
$Q_b = \frac{1.57286}{EI}$
4) End Moments of each member:
Substituting value of $Q_b in moment equation (i) to (iv)$
$M_{ab} = -3 + \frac{2}{3}(1.57286) = -1.95KN.m$
$M_{ba} = +3 + \frac{4}{3}(1.57286) = 5.10KN.m$
$M_{bc} = -6.76 + (1.57286) = -5.10KN.m$
$M_{cb} = 6.76 + \frac{1}{2}(1.57286) = 7.46KN.m$
5) B.M.D: