written 6.1 years ago by | • modified 5.1 years ago |
$H(e^{jω})=e^{j3ω} ;0≤|ω|≤\frac{π}{2}$ $H(e^{jω})=0 ;otherwise$
written 6.1 years ago by | • modified 5.1 years ago |
$H(e^{jω})=e^{j3ω} ;0≤|ω|≤\frac{π}{2}$ $H(e^{jω})=0 ;otherwise$
written 6.1 years ago by | • modified 6.1 years ago |
We know that
$H(k)=H(ω)_(ω=\frac{2πk}{N})$ ………(1)
$H(e^{jω} )=e^{-j3ω}$
Here ∝=3
$And ∝=\frac{(N-1)}{2}$
∴N=7
Now, By using equation (1)
$H(k)=e^{\frac{(-j6πk)}{7}} ;0≤ \frac{2πk}{7}≤\frac{π}{2}$
$=0 ; \frac{π}{2}≤\frac{2πk}{7}≤π$
$∴H(k)=e^{\frac{(-j6πk)}{7}} ;0≤k≤\frac{7π}{4π}$
$ =0 ; \frac{7π}{4π}≤k≤\frac{7π}{2π}$
$∴H(k)=e^{\frac{(-j6πk)}{7}} ;0≤k≤2$
$ =0 ;2≤k≤4$
Now , Here K is vary from 0 to 2
When k=0
$∴H(0)=1$
When k=1
$∴H(1)=e^{\frac{(-j6π)}{7}}$
When K=2
$∴H(2)=e^{\frac{(-j12π)}{7}}$
According to transfer function equation of Frequency Sampling Realization:
$H(z)=[\frac{(1-z^{-7})}{7}][\frac{H(0)}{(1-z^{-1}}+\frac{H(1)}{(1-e^{\frac{j2π}{7}} z^{-1}} +(\frac{H(2))}{(1-e^{\frac{j6π}{7}} z^{-1} )}]$