written 6.1 years ago by | • modified 5.1 years ago |
0.707≤|H(w) |≤1 ; for 0<ω<0.3π
|H(w) |≤0.2 ; for 0.75π<ω<π
written 6.1 years ago by | • modified 5.1 years ago |
0.707≤|H(w) |≤1 ; for 0<ω<0.3π
|H(w) |≤0.2 ; for 0.75π<ω<π
written 6.1 years ago by |
Step-1: Identify the filters specification
$A_p=0.707 ; A_s=0.2 ; ω_p=0.3π ; ω_s=0.75π ; T=1 sec $
Now,
$Ω_p=\frac{ω_p}{T}=0.942 rad/sec$
$Ω_s=\frac{ω_s}{T}=39.25 rad/sec$
Step-2: Calculation of order of filter
The order of filter is given by
$N≥\frac{1}{2} \frac{log[\frac{(1/(As^2 )-1)}{(1/(Ap^2 )-1)}]}{log(\frac{Ω_s}{Ω_p} }$
$N≥1.73≅2$
Step-3: Calculation of cut off frequency
$Ω_c=\frac{Ω_p}{(\frac{1}{(Ap^2-1)})^{\frac{1}{2N}}}$
$Ω_c=0.941 rad/sec$
Step-4: Calculation of poles
$P_k=Ω_c=e^{j(N+2k+1} \frac{π}{2N}$
Now,
when k=0;
$∴P_o=-0.665+j0.665$
when k=1;
$∴P_1=-0.665-j0.665$
Step-5: Calculation of Transfer function H(s)
$H(s)=\frac{(Ω_c)^N}{((s-P_o )(s-P_1))}$
$=\frac{0.885}{((s+0.665-j0.665)(s+0.665+j0.665))}$
$∴H(s)=\frac{0.885}{((s+0.665)^2+(0.665)^2 )}$
Step-6: Conversion of analog Transfer function to digital Transfer function
We know that,
$\frac{b}{((s+a^2 )+b^2 )}=\frac{(e^{-aTs} [sinbTs ] z^{-1})}{(1-2e^{-aTs} [cosbTs ] z^{-1}+e^{-2aTs} z^{-2} )}$
$∴H(z)=\frac{(e^{-0.665Ts} [sin0.665Ts ] z^{-1})}{(1-2e^{-0.665Ts} [cos0.665Ts ] z^{-1}+e^{-1.33Ts} z^{-2})}$