written 6.1 years ago by | • modified 5.1 years ago |
Pass band ripple: ≤1dB Pass band Edge: 4KHz
Stop band Attenuation: ≥40dB; Stop band Edge: 6KHz
Sampling Rate: 24KHz. Use bilinear transformation
written 6.1 years ago by | • modified 5.1 years ago |
Pass band ripple: ≤1dB Pass band Edge: 4KHz
Stop band Attenuation: ≥40dB; Stop band Edge: 6KHz
Sampling Rate: 24KHz. Use bilinear transformation
written 6.1 years ago by |
Step-1: Identification of specification of filter
$A_p=1dB ; A_s=40dB ; F_PB=4KHz ; F_SB=6KHz; F_S=24KHz ; T_S=41.66 µsec$
Now, we have
$F_{SB}=\frac{F_{SB}}{F_S} =0.25$
$ω_S=2πF_{SB}=1.57$
And
$F_PB=\frac{F_{PB}}{F_S} =0.166$
$ω_P=2πF_{PB}=1.043$
Now,
$(-A)_p (dB)=20log(A_p)$
$-1=20 log(A_p)$
$A_p=0.891$
And
$(-A)_s (dB)=20log(A_s)$
$-40=20log(A_s)$
$∴A_s=0.01$
$Ω_P=\frac{2}{T} tan(\frac{ω_P}{2})=27.583 K rad/sec$
$Ω_S=\frac{2}{T} tan(\frac{ω_S}{2})=47.969 K rad/sec$
Step-2: Order of filter
Order of filter is given by
$N≥\frac{1}{2}(19.08)$
$∴N=9.54≅10$
Step-3: Cut of frequency
$Ωc=\frac{Ω_P}{(\frac{1}{(A_P^2 )-1)^{\frac{1}{2N}}}}$
$Ωc=29.506 K rad/sec$
Step-4: Calculation of poles
$P_k=Ωce^{(j(N+2k+1)^{\frac{π}{2N}}}$
When k=0
$∴P_o=-4615+j29142$
$When k=1; P_1=-13395+j26290$
$When k=2; P_2=-20863+j20863$
$When =3 ; P_3=-26290+j13395$
$When =4 ; P_4=-29142+j4615$
$When =5 ; P_5=-29142-j4615$
$When =6 ; P_6=-26290-j13395$
$When k=7; P_7=-20863-j20863$
$When =8 ; P_8=-13395-j26290$
$When =9 ; P_9=-4615-j29142$
Step-5: Calculation of Transfer Function
$H(s)=\frac{(Ωc)^N}{((S-P_0)(S-P_1)(S-P_2)(S-P_3)(S-P_4)(S-P_5)(S-P_6)(S-P_7)(S-P_8)(S-P_9))}$