written 6.5 years ago by | • modified 5.5 years ago |
Pass band ripple: ≤1dB Pass band Edge: 4KHz
Stop band Attenuation: ≥40dB; Stop band Edge: 6KHz
Sampling Rate: 24KHz. Use bilinear transformation
written 6.5 years ago by | • modified 5.5 years ago |
Pass band ripple: ≤1dB Pass band Edge: 4KHz
Stop band Attenuation: ≥40dB; Stop band Edge: 6KHz
Sampling Rate: 24KHz. Use bilinear transformation
written 6.5 years ago by |
Step-1: Identification of specification of filter
Ap=1dB;As=40dB;FPB=4KHz;FSB=6KHz;FS=24KHz;TS=41.66µsec
Now, we have
FSB=FSBFS=0.25
ωS=2πFSB=1.57
And
FPB=FPBFS=0.166
ωP=2πFPB=1.043
Now,
(−A)p(dB)=20log(Ap)
−1=20log(Ap)
Ap=0.891
And
(−A)s(dB)=20log(As)
−40=20log(As)
∴A_s=0.01
Ω_P=\frac{2}{T} tan(\frac{ω_P}{2})=27.583 K rad/sec
Ω_S=\frac{2}{T} tan(\frac{ω_S}{2})=47.969 K rad/sec
Step-2: Order of filter
Order of filter is given by
N≥\frac{1}{2}(19.08)
∴N=9.54≅10
Step-3: Cut of frequency
Ωc=\frac{Ω_P}{(\frac{1}{(A_P^2 )-1)^{\frac{1}{2N}}}}
Ωc=29.506 K rad/sec
Step-4: Calculation of poles
P_k=Ωce^{(j(N+2k+1)^{\frac{π}{2N}}}
When k=0
∴P_o=-4615+j29142
When k=1; P_1=-13395+j26290
When k=2; P_2=-20863+j20863
When =3 ; P_3=-26290+j13395
When =4 ; P_4=-29142+j4615
When =5 ; P_5=-29142-j4615
When =6 ; P_6=-26290-j13395
When k=7; P_7=-20863-j20863
When =8 ; P_8=-13395-j26290
When =9 ; P_9=-4615-j29142
Step-5: Calculation of Transfer Function
H(s)=\frac{(Ωc)^N}{((S-P_0)(S-P_1)(S-P_2)(S-P_3)(S-P_4)(S-P_5)(S-P_6)(S-P_7)(S-P_8)(S-P_9))}