0
5.4kviews
Design digital low pass IIR Butterworth filter for the following specification:

Pass band ripple: ≤1dB Pass band Edge: 4KHz

Stop band Attenuation: ≥40dB; Stop band Edge: 6KHz

Sampling Rate: 24KHz. Use bilinear transformation

1 Answer
0
501views

Step-1: Identification of specification of filter

Ap=1dB;As=40dB;FPB=4KHz;FSB=6KHz;FS=24KHz;TS=41.66µsec

Now, we have

FSB=FSBFS=0.25

ωS=2πFSB=1.57

And

FPB=FPBFS=0.166

ωP=2πFPB=1.043

Now,

(A)p(dB)=20log(Ap)

1=20log(Ap)

Ap=0.891

And

(A)s(dB)=20log(As)

40=20log(As)

∴A_s=0.01

Ω_P=\frac{2}{T} tan(\frac{ω_P}{2})=27.583 K rad/sec

Ω_S=\frac{2}{T} tan(\frac{ω_S}{2})=47.969 K rad/sec

Step-2: Order of filter

Order of filter is given by

N≥\frac{1}{2}(19.08)

∴N=9.54≅10

Step-3: Cut of frequency

Ωc=\frac{Ω_P}{(\frac{1}{(A_P^2 )-1)^{\frac{1}{2N}}}}

Ωc=29.506 K rad/sec

Step-4: Calculation of poles

P_k=Ωce^{(j(N+2k+1)^{\frac{π}{2N}}}

When k=0

∴P_o=-4615+j29142

When k=1; P_1=-13395+j26290

When k=2; P_2=-20863+j20863

When =3 ; P_3=-26290+j13395

When =4 ; P_4=-29142+j4615

When =5 ; P_5=-29142-j4615

When =6 ; P_6=-26290-j13395

When k=7; P_7=-20863-j20863

When =8 ; P_8=-13395-j26290

When =9 ; P_9=-4615-j29142

Step-5: Calculation of Transfer Function

H(s)=\frac{(Ωc)^N}{((S-P_0)(S-P_1)(S-P_2)(S-P_3)(S-P_4)(S-P_5)(S-P_6)(S-P_7)(S-P_8)(S-P_9))}

Please log in to add an answer.