0
1.7kviews
An analog filter has transfer function H(s)=(s+0.1)(s+0.1)2+16 Deterine the transfer function of digital filter using bilinear transformation. The digital filter should have specification

ωr=π2

1 Answer
0
141views

H(s)=(s+0.1)((s+0.1)2+16) H(s)=(s+0.1)((s+0.1)2+(4)2) From above equation we can say that, Ω=4. And The value of ωr is given as ωr=π2 Now we know that Ω=2Tstan(ω2) ∴4=\frac{2}{T_s} tan⁡(\frac{π}{4}) ∴T_s=\frac{2}{4} tan⁡(\frac{π}{4}) ∴T_s=0.5 sec Using bilinear transformation H(z) can be obtained by putting , s=\frac{2}{T_s} \frac{((z-1)}{(z+1))}in the equation of H(s) ∴H(z)=\frac{(4((\frac{(z-1)}{(z+1)}) )+0.1)}{([4(\frac{(z-1)}{(z+1)})+0.1]^2+16)} ∴H(z)=\frac{(\frac{(4z-4)}{(z+1)}+0.1)}{([\frac{(4z-4+0.1z+0.1)}{(z+1)}]^2+16 )} ∴H(z)=\frac{((4.1z-3.9)(z+1))}{(16.81z^2-31.98z+15.21+16(z+1)^2 )} ∴H(z)=\frac{(4.1z^2+4.1z-3.9z-3.9)}{(32.81z^2+0.02z+31.21)} ∴H(z)=\frac{(4.1z^2+0.2z-3.9)}{(32.81z^2+0.02z+31.21)}

Please log in to add an answer.