written 6.1 years ago by | • modified 5.1 years ago |
$i) h(n)={1,\frac{-1}{2}}$ $ii) H(z)=\frac{(z^{-1}-a)}{(1-az^{-1} )}$
written 6.1 years ago by | • modified 5.1 years ago |
$i) h(n)={1,\frac{-1}{2}}$ $ii) H(z)=\frac{(z^{-1}-a)}{(1-az^{-1} )}$
written 6.1 years ago by | • modified 5.2 years ago |
Solution:
$h(n)=1, \frac{-1}{2}$
Taking Z transform
$H(z)=\sum_{n=0}^{1} h(n) z^{-n}$
$=1-\frac{1}{2} z^{-1}$
$Put Z=e^{j w}$
$H(w)=1-\frac{1}{2} e^{-j w}$
$=1-\frac{1}{2}[\cos w-j \sin w]$
$H(w)=1-\frac{1}{2} \cos w-j \sin \frac{w}{2}$
w | H(w) |
---|---|
0 | 0.5 |
$\frac{\pi}{4}$ | 0.736 |
$\frac{\pi}{2}$ | 1.11 |
$\frac{3 \pi}{4}$ | 1.39 |
$\pi$ | 1.5 |
From pass band it is observed that given filter is High pass filter.
$ii) H(z)=\frac{(z^{-1}-a)}{(1-az^{-1})}$
$Put z=e^{jw}$
$H(w)=\frac{(e^{-jw}-a)}{(1-ae^{-jw} )}$
$=\frac{((cosw-jsin w)-a)}{(1-a(cosw-jsin w))}$
$=\frac{((cosw-a)-j sinw)}{((-a cosw)+ja sinw )}$
Assuming a=1
$H(w)=\frac{((cosω-1)-j sinw)}{((1-cosw)+jsin w)}$
w | H(w) |
---|---|
0.1π | -1 |
0.2π | -1 |
0.3π | -1 |
0.4π | -1 |
0.5π | -1 |
All the value of w gives same response, Hence it is all pass filter.