0
1.3kviews
Sketch the frequency response and identify the following filter based on their passband.

$i) h(n)={1,\frac{-1}{2}}$ $ii) H(z)=\frac{(z^{-1}-a)}{(1-az^{-1} )}$

1 Answer
0
46views

Solution:

$h(n)=1, \frac{-1}{2}$

Taking Z transform

$H(z)=\sum_{n=0}^{1} h(n) z^{-n}$

$=1-\frac{1}{2} z^{-1}$

$Put Z=e^{j w}$

$H(w)=1-\frac{1}{2} e^{-j w}$

$=1-\frac{1}{2}[\cos w-j \sin w]$

$H(w)=1-\frac{1}{2} \cos w-j \sin \frac{w}{2}$

w H(w)
0 0.5
$\frac{\pi}{4}$ 0.736
$\frac{\pi}{2}$ 1.11
$\frac{3 \pi}{4}$ 1.39
$\pi$ 1.5

enter image description here

From pass band it is observed that given filter is High pass filter.

$ii) H(z)=\frac{(z^{-1}-a)}{(1-az^{-1})}$

$Put z=e^{jw}$

$H(w)=\frac{(e^{-jw}-a)}{(1-ae^{-jw} )}$

$=\frac{((cos⁡w-jsin w)-a)}{(1-a(cos⁡w-jsin w))}$

$=\frac{((cos⁡w-a)-j sin⁡w)}{((-a cos⁡w)+ja sin⁡w )}$

Assuming a=1

$H(w)=\frac{((cos⁡ω-1)-j sin⁡w)}{((1-cos⁡w)+jsin w)}$

w H(w)
0.1π -1
0.2π -1
0.3π -1
0.4π -1
0.5π -1

enter image description here

All the value of w gives same response, Hence it is all pass filter.

Please log in to add an answer.