0
1.1kviews
State and prove Parserval's theorem. Verify it for

x(n)=1,2,3,4

1 Answer
0
9views

If x(n)()DFTX(k) & y(n)()DFTY(k)then

N1n=0x(n).y(n)=1NN1n=0X(k).Y(k)

Proof:-We have

rxy(m)=N1n=0x(n).y(nm)N

At

m=0,rxy(m)=N1n=0x(n).y(n) ………(1)

By DFT, we have

DFTrxy(m)=X(K).Y(k)

rxy(m)=IDFTX(k).Y(k)

By IDFT eqn

rxy(m)=1NN1k=0X(k).Y(K).ej2πkmN

at m=0

rxy(0)=1NN1k=0X(k).Y(k) ……………(2)

By comparing eq (1)& (2)

N1n=0x(n).y(n)=1NN1k=0X(k).Y(k)

N1n=0(x(n))2=1NN1k=0(|X(k)|)2

Given x(n)={1,2,3,4}

Consider LHS

N1n=0(|x(n)|)2=3n=0(|x(n)|)2

=(1)2+(2)2+(3)2+(4)2

=30

Consider RHS

1NN1k=0(|X(k)|)2=143k=0(|X(k)|)2

Calculate DFT of x(n)

X(K)=10,2+2j,2,22j

=14[(10)2+(2+2j)2+(2)2+(22j)2]

=14100+(+8)+(4)+(8)

=14[100+8+4+8]

=30

Please log in to add an answer.