0
1.1kviews
State and prove Parserval's theorem. Verify it for
1 Answer
0
9views
written 6.5 years ago by |
If x(n)(↔)DFTX(k) & y(n)(↔)DFTY(k)then
∑N−1n=0x(n).y∗(n)=1N∑N−1n=0X(k).Y∗(k)
Proof:-We have
rxy(m)=∑N−1n=0x(n).y∗(n−m)N
At
m=0,rxy(m)=∑N−1n=0x(n).y∗(n) ………(1)
By DFT, we have
DFTrxy(m)=X(K).Y∗(k)
rxy(m)=IDFTX(k).Y∗(k)
By IDFT eqn
rxy(m)=1N∑N−1k=0X(k).Y∗(K).ej2πkmN
at m=0
rxy(0)=1N∑N−1k=0X(k).Y∗(k) ……………(2)
By comparing eq (1)& (2)
∑N−1n=0x(n).y∗(n)=1N∑N−1k=0X(k).Y∗(k)
∑N−1n=0(x(n))2=1N∑N−1k=0(|X(k)|)2
Given x(n)={1,2,3,4}
Consider LHS
∑N−1n=0(|x(n)|)2=∑3n=0(|x(n)|)2
=(1)2+(2)2+(3)2+(4)2
=30
Consider RHS
1N∑N−1k=0(|X(k)|)2=14∑3k=0(|X(k)|)2
Calculate DFT of x(n)
X(K)=10,−2+2j,−2,−2−2j
=14[(10)2+(−2+2j)2+(−2)2+(−2−2j)2]
=14100+(+8)+(4)+(8)
=14[100+8+4+8]
=30
ADD COMMENT
EDIT
Please log in to add an answer.