0
1.1kviews
State and prove Parserval's theorem. Verify it for

x(n)=1,2,3,4

1 Answer
0
9views

If x(n)()DFTX(k) & y(n)()DFTY(k)then

N1n=0x(n).y(n)=1NN1n=0X(k).Y(k)

Proof:-We have

rxy(m)=N1n=0x(n).y(nm)N

At

m=0,rxy(m)=N1n=0x(n).y(n) ………(1)

By DFT, we have

DFTrxy(m)=X(K).Y(k)

rxy(m)=IDFTX(k).Y(k)

By IDFT eqn

rxy(m)=1NN1k=0X(k).Y(K).ej2πkmN

at m=0

rxy(0)=1NN1k=0X(k).Y(k) ……………(2)

By comparing …

Create a free account to keep reading this post.

and 2 others joined a min ago.

Please log in to add an answer.