written 6.1 years ago by |
If $x(n) (↔)^{DFT} X(k)$ & $y(n)(↔)^{DFT} Y(k)$then
$∑_{n=0}^{N-1}x(n).y^* (n)=\frac{1}{N} ∑_{n=0}^{N-1}X(k).Y^* (k)$
Proof:-We have
$r_{xy} (m)=∑_{n=0}^{N-1}x(n).y^* (n-m)_N$
At
$m=0 ,r_{xy} (m)=∑_{n=0}^{N-1}x(n).y^* (n)$ ………(1)
By DFT, we have
$DFT{r_{xy} (m) }=X(K).Y^* (k)$
$r_{xy} (m)=IDFT{X(k).Y^* (k)}$
By IDFT eqn
$r_{xy} (m)=\frac{1}{N} ∑_{k=0}^{N-1}X(k).Y^* (K).e^{\frac{j2πkm}{N}}$
at m=0
$r_{xy} (0)=\frac{1}{N} ∑_{k=0}^{N-1}X(k).Y^* (k)$ ……………(2)
By comparing eq (1)& (2)
$∑_{n=0}^{N-1}x(n).y^* (n)=\frac{1}{N} ∑_{k=0}^{N-1}X(k).Y^* (k)$
$∑_{n=0}^{N-1}(x(n))^2=\frac{1}{N} ∑_{k=0}^{N-1}(|X(k) |)^2$
Given x(n)={1,2,3,4}
Consider LHS
$∑_{n=0}^{N-1}(|x(n) |)^2=∑_{n=0}^3(|x(n) |)^2$
$=(1)^2+(2)^2+(3)^2+(4)^2$
=30
Consider RHS
$\frac{1}{N} ∑_{k=0}^{N-1}(|X(k) |)^2 =\frac{1}{4} ∑_{k=0}^3(|X(k) |)^2$
Calculate DFT of x(n)
$X(K)={10,-2+2j,-2,-2-2j}$
$=\frac{1}{4} [(10)^2+(-2+2j)^2+(-2)^2+(-2-2j)^2 ]$
$=\frac{1}{4} {100+(+8)+(4)+(8)}$
$=\frac{1}{4}[100+8+4+8]$
$=30$