0
1.1kviews
State and prove Parserval's theorem. Verify it for
1 Answer
written 6.5 years ago by |
If x(n)(↔)DFTX(k) & y(n)(↔)DFTY(k)then
∑N−1n=0x(n).y∗(n)=1N∑N−1n=0X(k).Y∗(k)
Proof:-We have
rxy(m)=∑N−1n=0x(n).y∗(n−m)N
At
m=0,rxy(m)=∑N−1n=0x(n).y∗(n) ………(1)
By DFT, we have
DFTrxy(m)=X(K).Y∗(k)
rxy(m)=IDFTX(k).Y∗(k)
By IDFT eqn
rxy(m)=1N∑N−1k=0X(k).Y∗(K).ej2πkmN
at m=0
rxy(0)=1N∑N−1k=0X(k).Y∗(k) ……………(2)
By comparing …