written 6.1 years ago by |
Step-1: Identify the specification of filter
$N=7 ∝=3 ω_c=-1\ltω\lt1$
Window Type: Hamming
Step-2: Calculate the Inverse Fourier Transform of H(ω)
$h_d (n)=\frac{1}{2π} ∫_{-ω_c}{(ω_c}H_d (ω) e^{jωn} dω$
$=\frac{1}{2π} ∫_{-1}^1e^{-j3ω} e^{jωn }d$
$=\frac{1}{2π} ∫_{-1}^1e^{j(n-3)ω} dω$
$=\frac{1}{2π} [e^{\frac{j(n-3)ω)}{(j(n-3))}}]_{-1}^1$
$=\frac{1}{(π(n-3))} [(e^{j(n-3)}-e^{\frac{-j(n-3)))}{2j}}]$
$h_d (n)=\frac{sin(n-3)}{(π(n-3))}$
$h_d (0)=0.014=h_d (6)$ {by linear phase property}
$h_d (1)=0.144=h_d (5) $ {by linear phase property}
$h_d (2)=0.267=h_d (4)$ {by linear phase property}
By L-Hospital’s Rule
$h_d (3)=0.318$
Step-3: Calculation of window response W(n)
$W(n)=0.54-0.46cos(\frac{2πn}{(N-1))}$
W(0)=0.08=ω(6)
W(1)=0.31=ω(5)
W(2)=0.77=ω(4)
W(3)=1
Step-4: Calculate impulse Response of filter
$h(n)=h_d (n)*W(n)$
h(0)=0.0012=h(6)
h(1)=0.044=h(5)
h(2)=0.205=h(4)
h(3)=0.318
Step-5: Calculation of filter Transfer function
$H(z)= ∑_{n=0}^{N-1}h(n) z^{-n}$
$H(z)=0.00112+0.044z^{-1} +0.205z^{-2}+0.318z^{-3}+0.205z^{-4}+0.044z^{-5}+0.00112z^{-6}$
Step-6: Realization Structure