written 6.3 years ago by | • modified 5.3 years ago |
$H(e^{jω} )=e^{-j3ω} ; 0≤|ω|≤\frac{3π}{4}$
=0 ; otherwise
written 6.3 years ago by | • modified 5.3 years ago |
$H(e^{jω} )=e^{-j3ω} ; 0≤|ω|≤\frac{3π}{4}$
=0 ; otherwise
written 6.3 years ago by |
Step-1: Identify the specification of filter
$N=7 ∝=3 ω_c=\frac{-3π}{4}≤ω≤\frac{3π}{4}$
Window Type: Hamming
Step-2: Calculate the Inverse Fourier Transform of H(ω)
$h_d (n)=\frac{1}{2π} ∫_{-ω_c}^{ω_c}H_d (ω) e^{jωn} dω$
$=\frac{1}{2π} ∫_{\frac{(-3π)}{4}}^{\frac{3π}{4}}e^{-j3ω} e^{jωn} dω$
$=\frac{1}{2π} ∫_{\frac{(-3π)}{4}}^{\frac{3π}{4}}e^{j(n-3)ω} dω$
$=\frac{1}{2π} [(e^{j(n-3)\frac{3π}{4}}-e^{\frac{-j(n-3)\frac{3π}{4})}{(j(n-3)}}]$
$=\frac{1}{π(n-3)} [(e^{j(n-3)\frac{3π}{4}}-e^{\frac{-j(n-3)\frac{3π}{4}))}{2j}}]$
$h_d (n)=\frac{sin\frac{3π}{4}(n-3)}{(π(n-3)}$
$h_d (0)=0.075=h_d (6 )$ {by linear phase property}
$h_d (1)=-0.159=h_d (5 )$ {by linear phase property}
$h_d (2)=0.225=h_d (4 )$ {by linear phase property}
By L-Hospital’s Rule
$h_d (3)=0.75$
Step-3: Calculation of window Response W(n)
$W(n)=0.54-0.46cos(\frac{2πn}{(N-1)}$
W(0)=0.08=W(6)
W(1)=0.31=W(5)
W(2)=0.77=W(4)
W(3)=1
Step-4: Calculation of window Response h(n)
h(0)=0.006=W(6)
h(1)=-0.049=W(5)
h(2)=0.173=W(4)
h(3)=0.75
Step-5: Calculate of filter Transfer Function
$H(z)=∑_{n=0}^{N-1}h(n) z^{-n}$
$H(z)=0.006-0.049z^{-1}+0.173z^{-2}+0.75z^{-3}+0.173z^{-4}-0.049z^{-5}+0.006z^{-6}$
Step-6: Realization Structure