written 6.1 years ago by |
Step-1: Identification of specification of filter
$H_d (e^{jω} )=|H(ω)| e^{-j∝ω} ; -ω_c≤ω≤ω_c$
But N=M=7
We know that,
$∝=\frac{(N-1)}{2}=3$
Therefore,
$H_d (e^{jω} )=e^{-j3ω} ; 0.4π|ω|≤0.6π$
=0 ; otherwise
Window Type: Hamming Window
Step-2: Calculation of IFT of H(ω)
$h_d (n)=\frac{1}{2π} ∫_{-ω_c}^{ω_c)}H_d (ω) e^{jωn} dω$
$=\frac{1}{2π} ∫_{-0.6π}^{-0.4π)}e^{jωn} e^{-j3ω} dω + \frac{1}{2π} ∫_{0.4π}^{0.6π}e^{-j3ω} e^{jωn} dω$
$=\frac{1}{2π} ∫_{-0.6π}^{-0.4π}e^{jω(n-3)} dω + \frac{1}{2π} ∫_{0.4π}^{0.6π}e^{j(n-3)ω} d$
$=\frac{1}{2π} [\frac{e^{j(n-3)ω}}{(j(n-3)}]_{-0.6π}^{-0.4π}+\frac{1}{2π} [\frac{e^{j(n-3)ω}}{(j(n-3)}]_{0.4π}^{0.6π}$
$=\frac{1}{2π} [\frac{(e^{-j0.4π(n-3)}-e^{-j0.6π(n-3))}}{(j(n-3)}+\frac{(e^{j0.6π(n-3)}-e^{j0.4π(n-3))}}{(j(n-3)}]$
$=\frac{1}{π(n-3)} [sin[0.6π(n-3) ]-sin[0.4π(n-3) ] ]$
$h_d (n)=(sin[0.6π(n-3) ]-\frac{[0.4π(n-3) ])}{π(n-3)}$
$h_d (0)=0=h_d (6)$ {by linear phase property}
$h_d (1)=-0.187=h_d (5)$ {by linear phase property}
$h_d (2)=0=h_d (6)$ {by linear phase property}
By L-Hospital’s Rule
$h_d (n)=0.2$
Step-3: Calculation of window Response W(n)
Window Response for hamming is given by
$W(n)=0.54-0.46cos(\frac{2πn}{(N-1))}$
W(0)=0.08=W(6)
W(1)=0.31=W(5)
W(2)=0.77=W(4)
W(3)=1
Step-4: Calculate the impulse Response of filter
Impulse Response is given by
$h(n)=h_d (n)*W(n)$
h(0)=0=h(6)
h(1)=-0.057=h(5)
h(2)=0=h(4)
h(3)=0.2
Step-5: Calculation of filter Transfer function H(z)
$H(z)=∑_{n=0}^{N-1}h(n) z^{-n}$
$∴H(z)=∑_{n=}^6h(n) z^{-n)}$
$∴H(z)=0+(-0.057) z^{-1}+0+0.2z^{-3}+0+(0.057) z^{-5}+0$
$∴H(z)=0-0.057z^{-1}+0+0.2z^{-3}+0-.057z^{-5}+0$
Step-6: Draw the Realization structure