1
12kviews
Design a digital Butterworth IIR filter that satisfies the following constraint using BLT. Assume T= 0.1sec

0.6≤|H(ω) |≤1 ; 0≤ω≤0.35π

|H(ω) |≤0.1 ; 0.7π≤ω≤π

1 Answer
0
1.3kviews

Step-1: Identification of filters specification

Ap=0.6;Ap=0.1;ωp=0.35π;ωs=0.7π;T=0.1sec

Now,

Ωp=2Ttan(ωp2)=12.25rad/sec

Ωs=2Ttan(ωs2)=39.25rad/sec

Step-2: Calculation of order of filter

The order of filter is given by

N>12log[1As211Ap21]log(ΩsΩp)

N≥1.72≅2

Step-3: Calculation of cut off frequency

Ωc=Ωp(1Ap21)12N

Ωc=10.60rad/sec

Step-4: Calculation of poles

Pk=Ωcej(N+2k+1)π2N

when k=0;

∴P_o=-7.49+j7.49

when k=1;

∴P_1=-7.49-j7.49

Step-5: Calculation of Transfer function H(s)

H(s)=\frac{(Ω_c )^N}{((s-P_o )(s-P_1))}

=\frac{(10.60)^2}{((s+749-j7.49)(s+7.49+j7.49))}

∴H(s)=\frac{112.36}{((s+7.49)^2+(7.49)^2 )}

Conversion of analog Transfer function to digital Transfer function:

H(z)=H(s)_(s=\frac{2}{T} \frac{(z-1)}{(z+1)}

H(z)=\frac{112.36}{\frac{(20((z-1)}{(z+1)}}+(7.49)^2+(7.49)^2

Please log in to add an answer.