written 6.2 years ago by |
Here, we will obtain the relationship of jΩ axis in s-plane to the unit circle in the z-plane (r = 1)
$Ω=\frac{2}{T_s} ×\frac{(2r sinω)}{(r^2+2r cosω+1 )}$ ………………(1)
For the unit circle,r=1. Thus putting r=1in the equation 1, we get
$Ω=\frac{2}{T_s} ×\frac{(2 sinω)}{(1+2 cosω+1 )}$
$∴Ω=\frac{2}{T_s} ×\frac{(2 sinω)}{(2+2 cosω )}$
$∴Ω=\frac{2}{T_s} ×\frac{sinω}{(1+cosω )}$ …………….….(2)
We have trigonometric identities
$sinω=2sin\frac{ω}{2}.cos\frac{ω}{2} and 2 cos^2\frac{ω}{2}$
$1+ cosω$
Thus equation (1) becomes,
$Ω=\frac{2}{T_s} ×\frac{2 sin\frac{ω}{2} cos\frac{ω}{2}}{2 cos^2\frac{ω}{2}}$
$Ω=\frac{2}{T_s} ×\frac{2 sin\frac{ω}{2}}{2 cos\frac{ω}{2}}$
$Ω=\frac{2}{T_s} tan\frac{ω}{2}$
$ω=2tan^(-1)\frac{ΩT_s}{2}$ …..(2)
Now for different values of $ΩT_s$ ; the graph of $ΩT_s$ versus ω is as shown in below Fig.