written 6.2 years ago by |
We have generated equation for composite radix.
$X(k)=∑_{n=0}^{N_1-1}x(nm_1)W_N^{m_1 nk}+∑_{n=0}^{N_1-1}x(nm_1+1)W_N^{(nm_1+1)k}+∑_{n=0}^{N_1-1}x(nm_1+m_1-1)W_N^{(nm_1+m_1-1)k}$
For N=6=2×3
=$m_1×N_1$
i.e $N_1=3 ,m_1=2$
$X(k)=∑_{n=0}^2x(2n)W_6^{2nk}+∑_{n=0}^2x(2n+1)W_6^{(2n+1)k}$
$=∑_{n=0}^2x(2n)W_6^{2nk}+∑_{n=0}^2x(2n+1)W_6^{(2nk)} W_6^k$
Let, $X(k)=X_1 (k)+W_6^k X_2 (k)$……………………………….(1)
$X_1 (k)=∑_{n=0}^2x(2n) W_6^{2nk}$
$X_1 (k)=x(0)+x(2) W_6^{2k}+x(4)W_6^{4k}$
$X_1 (0)=x(0)+x(2)+x(4)$
$X_1 (1)=x(0)+x(2) W_6^2+x(4)W_6^4$
$X_1 (2)=x(0)+x(2) W_6^4+x(4)W_6^8$
Similarly,
$X_2 (k)=∑_{n=0}^2x(2n+1) W_6^{2nk}$
$X_2 (k)=x(1)+x(3) W_6^{2k}+x(5)W_6^{4k}$
$X_2 (0)=x(1)+x(3)+x(5)$
$X_2 (1)=x(1)+x(3) W_6^2+x(5)W_6^4$
$X_2 (2)=x(1)+x(3) W_6^4+x(5)W_6^8$
Substitute all values in equation 1
$X(0)=X_1 (0)+W_6^0 X_2 (0)$……………………….(i)
$X(1)=X_1 (1)+W_6^1 X_2 (1)$…………………….(ii)
$X(2)=X_1 (2)+W_6^2 X_2 (2)$…………………….(iii)
$X(3)=X_1 (3)+W_6^3 X_2 (3)$
$=X_1 (0)+W_6^3 X_2 (0)$…………………..(iv)
$X(4)=X_1 (4)+W_6^4 X_2 (4)$
$=X_1 (1)+W_6^3 X_2 (1)$………………….(v)
$X(5)=X_1 (5)+W_6^5 X_2 (5)$
$=X_1 (2)+W_6^5 X_2 (2)$………………..(vi)
Now, develop the algorithm flow diagram as per equations (i) to (vi)