0
889views
State and prove shifting properly of DFT
1 Answer
written 6.2 years ago by |
If $x(n) (↔)^{DFT}$ X(k),then
$x(n-l) (↔)^{DFT} X(k).e^{\frac{-j 2πkl}{N}}$
Proof:We have IDFT equation
$x(n)=\frac{1}{N} ∑_{k=0}^{N-1} X(k).e^{\frac{-j 2πkn}{N}}$
$IDFT [X(K).e^{\frac{-j 2πkl}{N}} ]=1/N ∑_{k=0}^{N-1}X(k).e^{\frac{-j 2πkl}{N}}.e^{\frac{j 2πkn}{N}}$
$1/N ∑_{k=0}^{N-1}X(K).e^{\frac{-j (2πk(n-l))}{N}}$
Comparing with DFT equation we have
$x(n-l) \lt-^{DFT}\gt X(K).e^{\frac{-j 2πkl}{N}}$