0
2.2kviews
If x(n)={2,3,4,5} i) Find DFT of x(n)using DIT-FFT ii) If y(n)=x(n-1)Find DFT of y(n) iii) m(n)=x(n)+jy(n). Find DFT of m(m)using above results only.
1 Answer
0
109views
written 6.2 years ago by |
Output of stage 1
$S_1 (0)= x(0) +x(2)=2+4=6$
$S_1 (1)=x(0)-x(2)=2-4=-2$
$S_1 (2)=x(1)+x(3)=3+5=8$
$S_1 (3)=x(1)-x(3)=3-5=-2$
Final Output
$X(0)=S_1 (0)+S_1 (2) W_4^0=6+8$
$X(1)=S_1 (1)+S_1 (3)W_4^1=-2+2j$
$X(2)=S_1 (0)-S_1 (2)W_4^0=6-8$
$X(3)=S_1 (1)-S_1 (3)W_4^1=-2-2j$
$X(K)={14,-2+2j,-2,-2-2j}$
ii) y(n)=x(n-1), Find DFT of y(n)
by circular shifting property
$x(n-l) (↔)^{DFT} X(K).e^{\frac{-j2πkl}{N}}$
$x(n-1) (↔)^{DFT} X(k).W_4^K$
$Y(0)=X(0).W_4^0=(14×1)=14$
$Y(1)=X(1).W_4^1=(-2+2j)(-j)=+2+2j$
$Y(2)=X(2) W_4^2=(-2)(-1)=2$
$Y(3)=X(3) W_4^3=(-2-2j)(+j)=2-2j$
$Y(k)={14,2+2j,2 ,2-2j}$
iii) m(n)=x(n)+jy(n)
By linearly property
M(K)=X(K)+jY(K)
M(0)=14+14j
M(1)=(-2+2j)+j(+2+2j)=-4+4j
M(2)=-2+2j
M(3)=(-2-2j)+j(2-2j)=0
M(K)={14+14j,-4+4j,-2+2j,0}
ADD COMMENT
EDIT
Please log in to add an answer.