written 6.6 years ago by | • modified 3.2 years ago |
Subject:- Structural Analysis II
Title:- Flexibility Method
Difficulty:- Hard
written 6.6 years ago by | • modified 3.2 years ago |
Subject:- Structural Analysis II
Title:- Flexibility Method
Difficulty:- Hard
written 6.6 years ago by |
Point B is act like a point load as shown in fig.
1) Dse = r-3 = 5-3 =2
Treat VBandVC as redundants,
R1=VB
R2=Vc
*Table :-
Part | origin | Limit | M | M1|M2 | |
---|---|---|---|---|---|
CB | C | 0-3 | 0 | 0 | 1x |
BA | B | 0-4 | -20xx2=−10x2 | 1x | 1(3+x) |
3) ^R1=∫l0M.M1EIdx =∫40(−10x2)(1x)EIdx ^R1=−640EI ^R2=∫l0M.M2EIdx =∫40(−10x2)(1(3+x))EIdx ^R2=−1280EI f11=∫l0(M1)2EIdx =∫40(1x)2EI [f11=21.33EI] f22=∫l0(M2)2EIdx =∫30(1x)2EIdx+∫40(1(3+x))2EIdx [f22=114.33EI] f12=f21=∫l0M1.M2EIdx = ∫40(1x)(1(3+x))dx [f12=f21=45.33EI] *Flexibility:-* FB=1KB FB=10EI = flexibility of spring Because of the flexibility 10EI support B will settled down by = 10EI -10 = -640 + 21.33VB+45.22VC 0 = -1280 + 45.33VB+114.33VC 630 = 21.33VB+45.33VC ------(1) 1280 = 45.33 VB+114.33VC --------(2) solving 1 and 2 we get, VB=36.48KNandVC=−3.27KN ![enter image description here][3] **B.M calculation :-** BMC = 0 B.MB = -3.2*3 = -9.81 KN B.MA = -3.27*7 + 36.84*4 + -20*4*42
= -36.9 KN.m