0
1.1kviews
Develop the flexibility matrix for the beam with respect to the co-ordinate Draw B.M.D

Subject:- Structural Analysis II

Title:- Flexibility Method

Difficulty:- Hard

enter image description here

1 Answer
0
11views

1) DSE = r-3 = 5-3 = 2

VC and VB are redundant

VC=R1

VB=R2

{Note :- In fixed beam type problem no need to find reaction always take the section at farther end}

enter image description here

enter image description here

Table :-

Part origin limit M M1|M2
DC D 0-2 -8x 0 0
CE C 0-1 -8(2+x)-12 1(1+x) 0
EB E 0-1 -8(3+x)-12-10x 1(1+x) 0
BA B 0-3 -8(4+x)-12-10(1+x)-5xx2 1(2+x) 1x

3) ^R1=l0M.M1EIdx = l0(8(2+x)12)(1x)dx+10(8(3+x)+210x)(1(1+x))dx+30(8(4+x)1210(1+x)5x22)(1(2+x))dx =-16.67 - 69 - 986.62 [^R1=1072.29EI] ^R2=l0M.M2EIdx =30(8(4+x)1210(1+x)2.5x2)(1x)dx [^R2=455.625EI] *4) Flexibility Coefficient :-* f11=l0(M1)2EIdx =10(1x)2EIdx+10(1(1+x))2EIdx+301(2+x)2dx = 0.333 + 2.333 + 39 f11=41.666EI f22=l0(M2)2EIdx =20(1x)2EIdx f22=9EI f12=f21=l0M1.M2EIdx =20(1(2+x)(1x))EIdx [f12=f21=18EI] *5) Applying Compatibility Condition:-* 0=-1072.29 + 41.76VC+18VB ------(1) 0= -455.62 + 18VC+9VB -------(2) solving 1 and 2 we get, VC = 28.40 KN VB = -6.183 KN

Please log in to add an answer.