written 6.6 years ago by | • modified 3.2 years ago |
Subject:- Structural Analysis II
Title:- Flexibility Method
Difficulty:- Hard
written 6.6 years ago by | • modified 3.2 years ago |
Subject:- Structural Analysis II
Title:- Flexibility Method
Difficulty:- Hard
written 6.6 years ago by | • modified 6.6 years ago |
1) DSE = r-3 = 5-3 = 2
VC and VB are redundant
VC=R1
VB=R2
{Note :- In fixed beam type problem no need to find reaction always take the section at farther end}
Table :-
Part | origin | limit | M | M1|M2 | |
---|---|---|---|---|---|
DC | D | 0-2 | -8x | 0 | 0 |
CE | C | 0-1 | -8(2+x)-12 | 1(1+x) | 0 |
EB | E | 0-1 | -8(3+x)-12-10x | 1(1+x) | 0 |
BA | B | 0-3 | -8(4+x)-12-10(1+x)-5xx2 | 1(2+x) | 1x |
3) ^R1=∫l0M.M1EIdx = ∫l0(−8(2+x)−12)(1x)dx+∫10(−8(3+x)+2−10x)(1(1+x))dx+∫30(−8(4+x)−12−10(1+x)−5x22)(1(2+x))dx =-16.67 - 69 - 986.62 [^R1=−1072.29EI] ^R2=∫l0M.M2EIdx =∫30(−8(4+x)−12−10(1+x)−2.5x2)(1x)dx [^R2=−455.625EI] *4) Flexibility Coefficient :-* f11=∫l0(M1)2EIdx =∫10(1x)2EIdx+∫10(1(1+x))2EIdx+∫301(2+x)2dx = 0.333 + 2.333 + 39 f11=41.666EI f22=∫l0(M2)2EIdx =∫20(1x)2EIdx f22=9EI f12=f21=∫l0M1.M2EIdx =∫20(1(2+x)(1x))EIdx [f12=f21=18EI] *5) Applying Compatibility Condition:-* 0=-1072.29 + 41.76VC+18VB ------(1) 0= -455.62 + 18VC+9VB -------(2) solving 1 and 2 we get, VC = 28.40 KN VB = -6.183 KN