written 6.2 years ago by | • modified 2.8 years ago |
Subject:- Structural Analysis II
Title:- Flexibility Method
Difficulty:- Hard
written 6.2 years ago by | • modified 2.8 years ago |
Subject:- Structural Analysis II
Title:- Flexibility Method
Difficulty:- Hard
written 6.2 years ago by |
Σ$M_A = 0$ ----(M-1)
1 - $V_B$*5 = 0
$V_B$ = 0.2KN
Σ$F_Y$ = 0
-$V_A$ + 0.2 = 0
$V_A$ = 0.2KN
Σ$M_A = 0$ -----(M-2)
12 - $V_B$5 = 0
$V_B$ = 0.4KN
Σ$F_Y$ = 0
$V_A$ - 1 + 0.4 = 0
$V_A$ = 0.6KN
Part | Origin | limit | $M_1 | M_2$ | |
---|---|---|---|---|
AC | A | 0-2 | -0.2x | 0.6x |
BC | B | 0-3 | 0.2x | 0.4x |
$f_{11} = \frac{1}{EI} \int_{0}^{l} (M_1)^2$dx
= $\frac{1}{EI} \int_{0}^{2} (-0.2x)^2 dx + \frac{1}{EI} \int_{0}^{3}(0.2x)^2dx$
$f_{11} = \frac{0.466}{EI}$
$f_{22} = \frac{1}{EI} \int_{0}^{l} (M_2)^2$dx
= $\frac{1}{EI} \int_{0}^{2} (0.6x)^2 dx + \frac{1}{EI} \int_{0}^{3}(0.4x)^2dx$
$f_{22} = \frac{2.4}{EI}$
$f_{12} = f_{21} = \frac{1}{EI} \int_{0}^{l} M_1.M_2 dx$
=$\frac{1}{EI} [\int_{0}^{2} (-0.2x)(0.6x)dx + \int_{0}^{3} (0.2x)(0.4x) dx]$
=$\frac{-0.32}{EI} + \frac{0.72}{EI} = \frac{0.4}{EI}$
= [$f_{12} = f_{21} = \frac{0.4}{EI}$]