written 6.4 years ago by | modified 2.9 years ago by |
Subject:- Structural Analysis II
Title:- Frames
Difficulty:- Hard
written 6.4 years ago by | modified 2.9 years ago by |
Subject:- Structural Analysis II
Title:- Frames
Difficulty:- Hard
written 6.4 years ago by |
M1 Analysis
M2 Analysis
M3 Analysis
2) Table:- [+ve -ve]
Past | Origin | Limit | M.I | $M_1 | M_2 | M_3$ | ||
---|---|---|---|---|---|---|
DC | D | 0-5 | I | 1x | 0 | -1 |
CB | C | 0-10 | 4I | 1*5 | 1x | -1 |
BA | B | 0-10 | 4I | -1(x-5) | 1*10 | -1 |
3) Flexibility coefficient:-
$f_{11} = $$\int_{0}^{l} \frac{(M_1)^2}{EI} dx$ =$$\int_{0}^{5} \frac{(1x)^2}{EI} dx$$ + $$\int_{0}^{10} \frac{(5)^2}{4EI} dx$$ + $$\int_{0}^{10} \frac{-(x-5)^2}{4EI} dx$$
=41.67 + 62.5 + 20.83
=$\frac{125}{EI}$
$f_{11} = \frac{125}{EI}$
$f_{22} = $$\int_{0}^{l} \frac{(M_2)^2}{EI} dx$ =$$\int_{0}^{10} \frac{(1x)^2}{4EI} dx$$ + $$\int_{0}^{10} \frac{(10)^2}{4EI} dx$$
=83.33 + 250
$f_{22} = \frac{333.33}{EI}$
$f_{33} = $$\int_{0}^{l} \frac{(M_3)^2}{EI} dx$ =$$\int_{0}^{5} \frac{(-1)^2}{EI} dx$$ + $$\int_{0}^{10} \frac{(-1)^2}{4EI} dx$$ + $$\int_{0}^{10} \frac{(-1)^2}{4EI} dx$$
$f_{33} = \frac{10}{EI}$
$f_{12} = f_{21} = \int_{0}^{l} \frac{M_1.M_2}{EI}$ dx
= $\int_{0}^{10} \frac{(5)(1x)}{4EI}dx + \int_{0}^{10} \frac{-(x-5)(10)}{4EI}$dx
=$\frac{62.5}{EI}$ + 0
$f_{12} = f_{21} = \frac{62.5}{EI}$
$f_{31} = f_{13} = \int_{0}^{l} \frac{M_3.M_1}{EI}$dx
=$$\int_{0}^{5} \frac{(-1)(1x)}{EI} dx$$ + $$\int_{0}^{10} \frac{(-1)(5)}{4EI} dx$$ + $$\int_{0}^{10} \frac{(-1)(-(x-5))}{4EI} dx$$
=-12.5 + (-12.5) + 0
$f_{31} = f_{13} = \frac{-25}{EI}$
$f_{32} = f_{23} = \int{0}^{l} \frac{M_3.M_2}{EI}$dx
= $\int{0}^{10} \frac{(-1)(1x)}{4EI}dx + \int{0}^{10} \frac{(-1)(10)}{4EI}$dx
$f_{32} = f_{23} = \frac{-37.5}{EI}$