written 6.3 years ago by | • modified 3.0 years ago |
Subject :- Structural Analysis II
Title :- Analysis of Indeterminate truss
Difficulty :- Hard
written 6.3 years ago by | • modified 3.0 years ago |
Subject :- Structural Analysis II
Title :- Analysis of Indeterminate truss
Difficulty :- Hard
written 6.3 years ago by | • modified 6.3 years ago |
1) Degree of Static indeterminacy :-
$D_{se}$ = r-3 = 3-3 = 0
$D_{si}$ = M - (2j - 3) = 11 - (2(6) - 3) = 11 - 9 = 2
$D_{s}$ = 0+2 =2
2) Treating diagonal member BF and DF are redundentes let us remove them
let R1 = Force BF
let R2 = Force DF
3) P-Analysis:-
Σ$M_A$ = 0(+ve)
=154 + 253 + 15*3
-ve*6 = 0
$V_E$ = 30KN
Σ$F_X$ = 0(+ve)
$V_A$ - 25 -15 + 30 =0
$V_A$ = 10KN
Joint A :- Apply C.D.E to joint A
tan@=$\frac{4}{3}$
@=$53.13^o$
Σ$F_Y$ = 0(+ve)
10 + $P_{AC}$sin(53.13) = 0
$P_{AC}$ = -12.5 (c)
Σ$F_X$ = 0(+ve)
$P_{AF}$ + (-12.5cos(53.13)) - 15 = 0
$P_{AF}$ = 22.5KN (T)
Joint E :-
Σ$F_Y$ = 0(+ve)
$P_{EC}$sin(53.13) + 30 = 0
$P_{EC}$ = -37.5KN (c)
$K_1$ Analysis :-
$K_2$ Analysis :-
Table :-
Member | P | $K_1 | K_2 | L | PK_1L | PK_2L | K_1^2L | K_2^2L | R_1 | R_2$ | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
AB | 0 | -0.8 | 0 | 4 | 0 | 0 | 2.56 | 0 | 7.17 | 15.97 |
BC | -15 | -0.6 | 0 | 3 | 27 | 0 | 1.08 | 0 | 7.17 | 15.97 |
CF | 15 | -0.8 | -0.8 | 4 | -48 | -48 | 256 | 2.56 | 7.17 | 15.97 |
FA | 22.5 | -0.6 | 0 | 3 | -40.5 | 0 | 1.08 | 0 | 7.17 | 15.97 |
AC | -12.5 | 1 | 0 | 5 | -62.5 | 0 | 5 | 0 | 7.17 | 15.97 |
CD | 0 | 0 | -0.6 | 3 | 0 | 0 | 0 | 18.08 | 7.17 | 15.97 |
DE | 0 | 0 | -0.8 | 4 | 0 | 0 | 0 | 2.56 | 7.17 | 15.97 |
EF | 22.5 | 0 | -0.6 | 3 | 0 | -40.5 | 0 | 1.08 | 7017 | 15.97 |
CE | -37.5 | 0 | 1 | 5 | 0 | -18.75 | 0 | 5 | 7.17 | 15.97 |
DF | 0 | 0 | 1 | 5 | 0 | 0 | 0 | 5 | 7.17 | 15.97 |
FB | 0 | 1 | 0 | 5 | 0 | 0 | 5 | 0 | 7.17 | 15.97 |
-124 | -276 | 17.28 | 17.28 |
$R_1 = \frac{\frac{ΣP_kL}{AE}}{\frac{K_1^2L}{AE}}$ = 7.17
$R_2 = \frac{\frac{ΣP_kL}{AE}}{\frac{K_2^2L}{AE}}$ = 15.97
F = P + $R_1K_1 + R_2K_2$