0
4.2kviews
Analyze the pin-joint frame by flexibility method as shown in fig. All the members may have assumed to the same AE=Constant.

Subject :- Structural Analysis II

Title :- Analysis of Indeterminate truss

Difficulty :- Hard

enter image description here

1 Answer
0
122views

1) Degree of static indeterminacy :-

$D_{se}$ = r-3 = 3-3 =0

$D_{si}$ = M-[2j-3] = 6-[2(4)-3] = 6-5 = 1

$D_{s}$ = 0+1 = 1

2) Let AC be the redundant :-

Remove Member AD

3) P-Analysis :-

enter image description here

Σ$M_D =0 =20*4-V_c$*4 =0

$V_c$ = 20KN

Σ$F_y =0 =V_D$-30+20 =0

$V_D$ = 10KN

Joint D:-

Σ$F_y =0$

10-30+$P_{DB}$sin45 =0

$P_{DB}$ = 28.28KN

enter image description here

4) K-Analysis:-

enter image description here

5) Table:-

Member P K L PKL $k^2$L R PK $P_f$=P+PK
AB -20 -0.7 4 56 1.96 -18.58 13 -7
BC -20 -0.7 4 56 1.96 -18.58 13 -7
CD 0 -0.7 4 0 1.96 -18.58 13 13
DA -30 -0.7 4 84 1.96 -18.58 13 17
AC 0 1 5.65 0 5.66 -18.58 -18.58 -18.58
DB 28.28 1 5.65 160.06 5.66 -18.58 -18.56 9.7
ΣPKL =356.06 Σ$K^2$L = 19.16 -18.58

R= -[$\frac{ΣPKL}{ΣK^2L}$] = -[$\frac{356.06}{19.16}$] = -18.58KN(c)

Please log in to add an answer.