written 6.2 years ago by | • modified 6.2 years ago |
Given:-
ww=$w \times w_{5} $
$w=5%$=0.05
$\gamma=18.44 kn/m^{2}$
G=2.67
$W_{w1}=0.05 w_{s}$
$W_{w2}=0.15 W_{s}$
Quantity of water to be added =$0.15ws-0.05ws$
$\gamma_{d}$=$\frac{\gamma}{1+w}$=$\frac{18.44}{1+0.05}=17.56kn/m^{3}$
$W_{s}=\gamma_{d} \times \gamma$
For $1m^{3}$ volume.
$W_{s}=17.56 \times 1 =17.56 kN$
$W_{w}=0.1\times17.56=17.56kN$
$V_{w}$=$\frac{W_{w}}{\gamma_{w}}=\frac{1.756}{9.81}=0.179m^{3}$ i.e 179 litres.
e=$\frac{G \gamma m _{w}}{\gamma d}-1=\frac{2.67 \ast 9.81}{17.56}-1$
e=0.492
weight of sand filling hole =1050-445=605g
unit weight of sand=$\frac{1550}{1000}$=1.55g/cc
Volume of the hole =$\frac{605}{1.55}$=390.32cc
Insitu unit density $\int = \frac{761.25}{390.32}$=1.95 g/cc
Insitu unit weight.$\gamma = \int_{g}=1.95 \ast 9.81$= 19.13 kN\m^{3}
$\gamma=19.13 kN/m^{3}$
The insitu unit weight of soil is 19.13 $kN/m^{3}$