written 6.3 years ago by |
The minimum cost formula can be given as
$$C(x,y) = Max(P) - |f(x) – f(y)|$$
In this case Max(P) = 7 and consider vertical top to bottom approach
A:
C(x,y) = (7 - |5 - 6|) + (7 - |3 - 4|) + (7 - |0 - 1|) = 18
B:
C(x,y) = (7 - |5 - 6|) + (7 - |6 - 4|) + (7 - |4 - 2|) + (7- |1 – 7|) = 17
C:
C(x,y) = (7 - |5 - 6|) + (7 - |6 - 4|) + (7 - |4 - 2|) + (7 - |4 – 1|) + (7 - |0 - 1|) = 26
D:
C(x,y) = (7 - |5 - 6|) + (7 - |3 - 4|) + (7 - |4 - 1|) + (7 - |1 - 7|) = 17
E:
C(x,y) = (7 - |6 - 7|) + (7 - |4 - 2|) + (7 - |1 - 7|) = 11
F:
C(x,y) = (7 - |6 - 7|) + (7 - |6 - 4|) + (7 - |3 - 4|) + (7 - |0 - 1|) = 23
G:
C(x,y)= (7 - |6 - 7|)+ (7 - |6 - 4|)+ (7 - |3 - 4|)+ (7 - |4 - 1|)+7-|1-7|)=22
H:
C(x,y) = (7 - |6 - 7|) + (7 - |4 - 2|) + (7 - |4 - 1|) + (7 - |0 - 1|) = 21
From the calculation, the minimum cost for path E. In other words, path E gives the strongest edge.