written 6.3 years ago by |
The minimum cost formula can be given as
$$C(x,y) = Max(P) - |f(x) – f(y)|$$
In this case Max(P) = 7 and consider vertical top to bottom approach
A:
C(x,y) = (7 - |1 - 2|) + (7 - |2 - 6|) + (7 - |4 - 3|) = 15
B:
C(x,y) = (7 - |1 - 2|) + (7 - |2 - 6|) + (7 - |6 - 4|) + (7- |3 – 3|) = 21
C:
C(x,y) = (7 - |1 - 2|) + (7 - |2 - 6|) + (7 - |6 - 4|) + (7 - |3 – 6|) + (7 - |4 - 3|) = 24
D:
C(x,y) = (7 - |1 - 2|) + (7 - |2 - 6|) + (7 - |6 - 3|) + (7 - |3 - 3|) = 20
E:
C(x,y) = (7 - |2 - 0|) + (7 - |6 - 4|) + (7 - |3 - 3|) = 17
F:
C(x,y) = (7 - |6 - 2|) + (7 - |2 - 6|) + (7 - |2 - 0|) + (7 - |4 - 3|) = 17
G:
C(x,y) = (7 - |2 - 0|) + (7 - |6 - 2|) + (7 - |2 - 6|) + (7 - |6 - 3|) + (7 - |3 - 3|) = 22
H:
C(x,y) = (7 - |2 - 0|) + (7 - |6 - 4|) + (7 - |3 - 6|) + (7 - |4 - 3|) = 20
From the calculation, the minimum cost for path A. In other words, path A gives the strongest edge.