written 6.2 years ago by
teamques10
★ 68k
|
•
modified 6.2 years ago
|
$$H=75$$
$$Q=1.40\ m^3/min=\frac{1.40}{60}=0.0233\ m^3/s$$
S1 = 4m h1 = H – s1 = 75 – 4 = 71 at r1 = 4
S2 = 2m h2 = H – s2 = 75 – 2 = 73 at r2 = 14
$$Q=\frac{1.36k(H^2-h_1^2)}{log\frac{R}{r_1}}=\frac{1.36k(H^2-h^2)}{log\frac{R}{r_2}}$$
$$\frac{(75^2-71^2)}{log\frac{R}{r_1}}=\frac{(75^2-73^2)}{log\frac{R}{r_2}}$$
$$\log\frac{R}{14}=0.50684\log_{10}\left(\frac{R}{4}\right)$$
$$\log\frac{R}{14}=\log_{10}\left(\frac{R}{4}\right)^{0.50684}$$
$$R^{0.50684}=6.9343$$
$$R=50.72$$
Coefficient of permeability
$$Q=\frac{1.36k(H^2-h^2)}{\log\left(\frac{R}{r}\right)}$$
$$0.0233=\frac{1.36k(75^2-71^2)}{\log\left(\frac{50.72}{4}\right)}$$
$$k=3.236\times10^{-5}$$
Drawdown in the well (h) of diameter 40 mm
$$Q=\frac{1.36k(H^2-h^2)}{\log\left(\frac{R}{r}\right)}$$
$$0.0233=\frac{1.36\times3.236\times10^{-5}(75^2-h^2)}{\log\left(\frac{50.72}{0.2}\right)}\ \ \ \ \ \ \ r=0.4/2$$
$$h=66.10$$
Drawdown at the well s = H – h = 75 – 66.10
= 8.9 m
The drawdown in the well = 8.9 m