0
4.8kviews
The following FB and BB observed in traversing with a compass in place where local attraction was suspected . find the corrected FB and BB and true bearing of each of the line given that the...
1 Answer
0
221views

enter image description here

The difference of BB and FB of DE is 180O hence station A and B free from local attraction

  1. FB of DE= 325$^\circ$15’ , BB Of DE= 145$^\circ$15’

    FB-BB= 325$^\circ$15’ - 145$^\circ$15’= 180$^\circ$

  2. Observed BB of CD= 207$^\circ$15’

    Correct FB of CD= 207$^\circ$15’ - 180$^\circ$=27$^\circ$15’

    Observed FB of CD is 25$^\circ$45’

    Error is 27$^\circ$15’ - 25$^\circ$45’=1$^\circ$30’

  3. Observed BB of BC is = 278$^\circ$30’

    Correct BB of BC= 278$^\circ$30’+ 1$^\circ$30’ = 280$^\circ$

    Correct FB of BC = 280$^\circ$- 180$^\circ$= 100$^\circ$

    Observed FB of BC=100$^\circ$5’

    Error is 100$^\circ$- 100$^\circ$45’ = -0$^\circ$45’

  4. Observed BB of AB = 219$^\circ$15’

    Correct BB of AB= 219$^\circ$150 -0$^\circ$45’=218$^\circ$30’

    Correct FB of AB = 218$^\circ$30’ - 180$^\circ$ =38$^\circ$30’

    Result in tabular form

Line Observed bearing correction Corrected bearing Remark
AB 38$^\circ$30' - 38$^\circ$30' 1. Station B and C Are affected by local attraction 2. station D and E are free from local attraction.
BA 219$^\circ$15' +0$^\circ$45' at B 218$^\circ$30' -same-
BC 100$^\circ$45' -0$^\circ$45' at B 100$^\circ$ -same-
CB 278$^\circ$30' +1$^\circ$30' at C 280$^\circ$ -same-
CD 25$^\circ$45' +1$^\circ$30' at C 27$^\circ$15' -same-
DC 207$^\circ$15' 0 207$^\circ$15' -same-
DE 325$^\circ$15' 0 325$^\circ$15' -same-
ED 145$^\circ$15' 0 145$^\circ$15' -same-

To find true bearing

Line Declination True F.B True B.B
AB 10$^\circ$W 28$^\circ$20' 208$^\circ$30'
BC 10$^\circ$W 90$^\circ$ 270$^\circ$
CD 10$^\circ$W 17$^\circ$15' 197$^\circ$15'
DE 10$^\circ$W 316$^\circ$15' 135$^\circ$15'
Please log in to add an answer.