written 6.3 years ago by | • modified 4.5 years ago |
Time in hrs | Sound level (DBA) |
---|---|
5:00 - 7:00 | 43 |
7:00 - 9:00 | 56 |
9:00 - 11:00 | 64 |
11:00 - 13:00 | 70 |
13:00 - 15:00 | 69 |
15:00 - 17:00 | 55 |
written 6.3 years ago by | • modified 4.5 years ago |
Time in hrs | Sound level (DBA) |
---|---|
5:00 - 7:00 | 43 |
7:00 - 9:00 | 56 |
9:00 - 11:00 | 64 |
11:00 - 13:00 | 70 |
13:00 - 15:00 | 69 |
15:00 - 17:00 | 55 |
written 6.3 years ago by | • modified 6.2 years ago |
To determine the equivalent noise level, the following formula is used
dB = $20 \times log_{10} \times \frac{P}{P_{o}}$
43 = $20 \times log_{10} \times \frac{P_{1}}{P_{o}}$
43 = $2 \times 10 \times log_{10} \times \frac{P_{1}}{P_{o}}$ = $10 \times log_{10} \times (\frac{P_1}{P_{o}})^2$
4.3 = $log_{10} \times (\frac{P_{1}}{P_{0}})^2$
$10^{4.3} = (\frac{P_{1}}{P_{0}})^2$
56 = $20 log_{10} \times \frac{P_{2}}{P_{o}}$
56 = $2 \times 10 \times log_{10} \times \frac{P_{2}}{P_{o}}$
5.6 = $2 log_{10}(\frac{P_{2}}{P_{0}})$
$10^{5.6} = (\frac{P_{2}}{P_{0}})^2$
64 = $ 20 log_{10} \times \frac{P_{3}}{P_{o}}$
64 = $ 2 \times 10 \times log_{10} \times \frac{P_{3}}{P_{o}}$
6.4 = $2 log_{10}(\frac{P_{3}}{P_{0}})$
$10^{6.4} = (\frac{P_{3}}{P_{0}})^2$
70 = $ 20 log_{10} \times \frac{P_{4}}{P_{o}}$
70 = $ 2 \times 10 \times log_{10} \times \frac{P_{4}}{P_{o}}$
7 = 2$log_{10}(\frac{P_{4}}{P_{0}})$
$10^{7} = (\frac{P_{4}}{P_{0}})^2$
69 = $ 20 log_{10} \times \frac{P_{5}}{P_{o}}$
69 = $2 \times 10 \times log_{10} \times \frac{P_{5}}{P_{o}}$
6.9 = 2$log_{10}(\frac{P_{5}}{P_{0}})$
$10^{6.9} = (\frac{P_{5}}{P_{0}})^2$
55 = 20$log_{10} \times \frac{P_{6}}{P_{o}}$
55 = $2 \times 10 \times log_{10} \times \frac{P_{6}}{P_{o}}$
5.5 = 2$log_{10}(\frac{P_{6}}{P_{0}})$
$10^{5.5} = (\frac{P_{6}}{P_{0}})^2$
$\frac{P}{P_{0}} = [(\frac{P_{1}}{P_{0}})^2 + (\frac{P_{2}}{P_{0}})^2 + (\frac{P_{3}}{P_{0}})^2 + (\frac{P_{4}}{P_{0}})^2 + (\frac{P_{5}}{P_{0}})^2 + (\frac{P_{6}}{P_{0}})^2]^{1/2}$
= $[10^{4.3} + 10^{5.6} + 10^{6.4} + 10^{7} + 10^{6.9} + 10^{5.5}]^{1/2}$
= 20 X 3.66
=> Equivalent noise level = 73.2 dB.