written 6.3 years ago by | • modified 2.8 years ago |
Subject*: Structural Analysis II
Topic: Flexibility Method
Difficulty: Medium / High
written 6.3 years ago by | • modified 2.8 years ago |
Subject*: Structural Analysis II
Topic: Flexibility Method
Difficulty: Medium / High
written 6.3 years ago by | • modified 6.3 years ago |
$D_{S}$
$D_{s}=D_{se}+D_{s};$
=$(5-3)-(2-7)$
=$2-1$
=1
$D_{k}$
$D_{k}=4$
$D_{si}=0$[For beam D_{si}=0]
$D_{s}=D_{se}+D_{sd}$
=$1+0=1$
$D_{s}=1$
$D_{s}$
$D_{s}=D_{se}+D_{si}$
$D_{se}=r-3-(m^\prime-1)-(m^\prime-1)$
=$6-3-(2-1)-(2-1)$
=$3-1-1=2-1=1$
$D_{si}=0$[For beam D_{si}=0]
$D_{s}=1+0=1$
$D_{s}=1$
$D_{k}$
$D_{k}=6$
$D_{s}$
$D_{s}=D_{se}+D_{si}$
$D_{se}=r-3-(m^\prime-1)$
$5-3-(2-1)$
$2-1$
=1
$D_{si}=0$
$D_{s}=1+0=1$
$D_{s}=1$
$D_{k}$
$D_{k}=5$
$D_{s}$
$D_{s}=D_{se}+D_{si}$
$D_{se}=r-3$
=$7-3$
=4
$D_{si}=0$
$D_{s}=4+0$
$D_{s}=4$
$D_{k}$
$D_{k}=1$
$D_{s}$
$D_{s}=D_{se}+D_{si}$
$D_{se}=r-3-(m^\prime-1)$
=$6-3-(2-1)$
=$3-1$
=2 $D_{si}=0$
$D_{s}=2+0$
=2
$D_{s}=2$
$D_{k}$
$D_{k}=5$
$D_{s}$
$D_{s}=D_{se}+D_{si}$
$D_{se}=r-3-(m^\prime-1)$
=$6-3-(2-1)$
=$3-1$
=2
$D_{si}=0$
$D_{s}=2+0$
$D_{s}=2$
$D_{k}$
$D_{s}$
$D_{s}=D_{se}+D_{si}$
$D_{se}=r-3$
=$5-3=2$
$D_{si}=3\times c$[c=closed loop]
=$3\times3$
=9
$D_{s}=9+2=11$
$D_{s}=11$
$D_{k}$
$D_{k}=13$
$D_{se}=r-3=6-3=3$
$D_{si}=3 \times c =3\times 4=12 $
$D_{s}=3+12=5$
$D_{s}=15$
$D_{k}$
$D_{k}=15$
$D_{s}$
$D_{s}=D_{se}+D_{si}$
$D_{se}=r-3=6-3=3$
$D_{si}=3\times c$
=$3\times 2=6$
$D_{s}=3+6=9$
$D_{s}=9$
$D_{k}$
$D_{k}=9$
$D_{s}=D_{se}+D_{si}$
$D_{se}=r-3=8-3=5$
$D_{si}=3\times c=3\times 2=6$
$D_{s}=5+6=11$
$D_{s}=11$
$D_{k}$
$D_{k}=9$
$D_{s}$
$D_{s}=D_{se}+D_{si}$
$D_{se}=r-3=3-0$
$D_{si}=3\times c=3 \times 1 =3$
$D_{s}=0+3$
$D_{s}=3$
$D_{k}$
$D_{k}=9$
$D_{s}$
$D_{s}=D_{se}+D_{si}$
$D_{se}=r-3-(m^\prime-1)$
=$6-3-(3-1)$
=$3-2$
=1
$D_{si}=3\times c$
=$3\times 6=18$
=$3-2$
=1
$D_{si}=3\times c$
=$3\times 6=18$
$D_{s}=1+18=19$
$D_{s}=19$
$D_{k}$
$D_{k}=20$
$D_{s}$
$D_{s}=D_{se}+D_{si}$
$D_{se}=r-3=4-3=1$
$D_{si}=m-2j-3$ (formula)
=$10-2(6)-3$
=$10-12-3$
=$10-9$
=1
$D_{s}=2$
$D_{s}=1+1=2$
$D_{k}=2{j}-r$
=$2\times 6-4$
=$12-4$
=8
$D_{k}=8$
$D_{s}$
$D_{s}=D_{se}+D_{si}$
$D_{se}=r-3=3-3=0$
$D_{si}=m-2j-3$
=$11-2(6)-3$
=$11-12-3$
=$11-9$
=2
$D_{s}=2$
$D_{k}$
$D_{k}=2j-r$
=$2\times 6-3$
=$12-3$
$D_{k}=9$
$D_{s}=D_{se}+D_{si}$
$D_{se}=r-3=5-3=2$
$D_{si}=M-2j-3$
=$8-(2\times 5)-3$
=$8-10-3$
=$8-7$
=1
$D_{s}=2+1=3$
$D_{s}=3$
$D_{k}$
$D_{k}=2j-r$
=$2\times 5-5$
=$10-5$
=5
$D_{k}=5$
$D_{s}$
$D_{se}=r-3=4-3-1$
$D_{si}=m-2j-3$
=$5-(2\times 4)-3$
=$5-8-3$
=$5-5=0$
$D_{s}=1+0$
$D_{s}=1$
$D_{k}$
$D_{k}=2j-r$
=$2\times 4-4$
=$8-4$
$D_{k}=4$
$D_{se}=r-3=4-3=1$
$D_{si}=m-2j-3$
=$15-2\times 8-3$
=$15-16-3$
=$15-13$
=2
$D_{s}=1+2=3$
$D_{s}=3$
$D_{k}=2j-r$
=$2\times 8-4$
=$16-4$
=12
$D_{k}=12$
$D_{s}$
$D_{s}=D_{se}+D_{si}$
$D_{se}=r-3$
=$7-3=4$
$D_{si}=3\times c =3\times 0=0$
$D_{s}=4+0=4$
$D_{s}=4$
$D_{k}$
$D_{k}=2$
$D_{s}$
$D_{s}=D_{se}+D_{si}$
$D_{se}=r-3=4-3=1$
$D_{si}3\times c=0$
$D_{s}=1+0$
$D_{s}=1$
$D_{k}$
$D_{k}=4$
$D_{s}$
$D_{s}=D_{se}+D_{si}$
$D_{se}=r-3=3-3=0$
$D_{si}=3\times c=3\times 0=0$
$D_{s}=0+0=0$
$D_{s}=0$
$D_{k}$
$D_{k}=3$
$D_{s}$
$D_{s}=D_{se}+D_{si}$
$D_{se}=r-3=9-3=6$
$D_{si}=3\times c=0$
$D_{s}=6$
$D_{k}$
$D_{k}=4$