written 6.3 years ago by | • modified 6.3 years ago |
Subject: Structural Analysis II
Topic: Flexibility Method
Difficulty: Medium / High
written 6.3 years ago by | • modified 6.3 years ago |
Subject: Structural Analysis II
Topic: Flexibility Method
Difficulty: Medium / High
written 6.3 years ago by | • modified 6.3 years ago |
1)Free Bending moment
For AB, BM at $E=\frac{wl^{2}}{8}=\frac{24\times3^{2}}{8}=27kN.m$
For BC $\ \ \ M_{L}=-7.5\times2 =-15kN$
$M_{R}=7.5\times2$
$=15kN.M$
For CD BM at G=$\frac{wab}{l}=\frac{15\times2\times3}{5}=30kN.m$
2) Free Bending moment diagram
3)Three moment theorem
For $A^{1}-A-B$
$MA^{1}(l_{1})+2M_{A}(l_{1}+l_{2})+M_{B}(l_{2})+\frac{6A_{1}x_{1}}{l_{1}}+\frac{6A_{2}x_{2}}{l_{2}}=0$
$0+2M_{A}(0+3)+M_{B}(3)+\frac{6\times0\times0}{0}\frac{6\times54\times1.5}{3}=0$
$\underline{6M_{A}+3M_{B}=-162} \tag{1}$
For A-B-C
$M_{A}(l_{1})+2M_{B}(l_{1}+l_{2})+M_{c}(l_{2})+\frac{5A_{1}x_{1}}{l_{1}}+\frac{6A_{2}x_{2}}{l_{2}}+\frac{6 \int_{1}E_{1}x_{1}}{l_{1}}+\frac{6\int_{2}E_{2}x_{2}}{l_{2}}=0$
$A_{2}x_{2}=\{\frac{1}{2}\times15\times2\times(\frac{2}{3}\times2)\}-\{\frac{1}{2}\times15\times2\times(2+\frac{1}{3}\times2)\}$
$=20-40$
$=-20$
$\int_{1}=\int_{B}-\int_{A}$
$=0-0$
$=0$
$\int_{2}=\int_{B} - \int_{C}$
$ =0-(-0.08)$
$ =0.008$
$3(M_{A})+2M_{B}(3+4)+M_{c}(4)=\frac{6\times54\times1.5}{3}+\frac{6\times(-20)}{4}+0+\frac{6\times0.008\times1600}{4}=0$
$3M_{A}+14M_{B}+4M_{c}+162+(-30)+0+19.2=0$
$\underline{3M_{A}+14M_{B}+4M_{c}=-151.2}\tag{2}$
For , B-C-D
$M_{B}(l_{1})+2M_{c}(l_{1}+l_{2})+M_{D}(l_{2})+\frac{6A_{1}\bar{x_{1}}}{l_{1}}+\frac{6A_{2}x_{2}}{l_{2}}+\frac{6\int_{1}E_{1}x_{1}}{l_{1}}+\frac{6\int_{2}{E_{2}I_{2}}}{l_{2}}=0$
$A_{1}x_{1}=-\{\frac{1}{2}\times15\times(\frac{2}{3}\times2)\}+\{\frac{1}{2}\times2\times15\times(2+\frac{1}{3}\times2)\}$
$=-20+40$ =20
$int_{1}=\int_{c}-\int_{B}$
$=-0.008-0$
$\int_{1}=-0.008$
$int_{2}=int_{c}-\int_{D}$
$=-0.008-0$
$\int_{2}=-0.008$
$4M_{B}+18M_{c}+5M_{0}+\frac{6\times20}{4}+\frac{6\times75\times2.67}{5}+\frac{6\times(-0.008)1600}{4}+\frac{6\times(-0.008)\times1600}{5}=0$
$4M_{B}+18M_{c}+5M_{D}+60+240.3+(-19.2)+(-15.36)=0$ $4M_{B}+18M_{c}+5M_{D}+300.3-19.2-15.36=0$ $4M_{B}+18M_{c}+5M_{D}+265.74=0$
$\underline{4M_{B}+18M_{c}+5M_{D}=-265.74}\tag{3}$
For, $C-D-D^\prime$
$\{l_{1}=5 \ l_{2}=0\}$
$M_{c}(l_{1})+2M_{D}(l_{1}+l_{2})+M_{D}^\prime(l_{2})+gA_{1}x_{1}+6A_{2}x_{2}+\frac{6\times0.008\times1600}{5}+0$
$5M_{c}+10m_{D}+209.7+15.36=0$
$\underline{5m_{c}+10m_{D}=-225.0}\tag{4}$
From equation $(1)$ we get
$6m_{A}+3M_{B}=-162$
$6M_{A}=-162-3m_{B}$
$M_{A}=\frac{-162-3M_{B}}{6}$
=$\frac{-162}{6}-\frac{3}{6}M_{B}$
$\underline{M_{A}=-27-0.5M_{B}}\tag{5}$
Putting the value of $M_{A}$ in equation $(2)$
$3(-27-0.5M_{B})+14M_{B}+4M_{c}=-151.25$
$-81-1.5m_{B}+14M_{B}+4M_{C}=-151.2$
$-81+12.5M_{B}+4M_{c}=-151.2$
$12.5M_{B}+4M_{c}=-151.2+81$
$\underline{12.5M_{B}+4M_{c}=-70.2}\tag{6}$
Solving 3,4 & 6 we get
$\underline{M_{B}=-26.7kN.m}$
$\underline{M_{c}=-9.19kN.m}$
$\underline{M_{D}=17.90kN.m}$
$M_{A}=-27-0.5M_{B}$
$=-27-0.5(-2.67)$
$\underline{25.67kN.m}$