written 6.4 years ago by | • modified 6.4 years ago |
Subject: Structural Analysis II
Topic: Flexibility Method
Difficulty: Medium / High
written 6.4 years ago by | • modified 6.4 years ago |
Subject: Structural Analysis II
Topic: Flexibility Method
Difficulty: Medium / High
written 6.4 years ago by |
Free Bending Moment:
For Span AB BM at $E=\frac{wab}{l}=\frac{80\times2\times4}{6}=106.67KN.m$
For Span BC BM at $F=\frac{wl^{2}}{8}=\frac{20\times5^{2}}{8}=62.5kN.m$
For Span CD BM at $G=\frac{wab}{l}=\frac{60\times3\times2}{5}=72kN.m$
Support B sinks by 5mm =0.005m=-0.005(Downward)
$E=2.1\times10^{5}N/mm^{2}$
=$2.1\times10^{5}\frac{N}{(10^{-3})^{2}m^{2}}$
$=2.1\times10^{5}\times10^{6}N/m^{2}$
$I=9300cm^{4}$
$=9300\times{(10^{-2}})^{4}m^{4}$
$9300\times10^{-8}m^{4}$
$E\times I=2.1\times{10^{5}}\times{10}^{6}\times9300\times10^{-8}$
$(N/m^{2}) \times (m^{4})$
$=19830\times10^{3}N/m^{2}$
$=19530kN/m^{2}$
2) Free bending moment diagram
3)Applying Three moment theorem
For A-B-C
$M_{A}(l_{1})+2M_{B}(l_{1}+l_{2})+M_{c}(l_{2})+\frac{6A_{1}x_{1}}{l_{1}}+\frac{6A_{2}x_{2}}{l_{2}}+\frac{6E_{1}I_{1}d_{1}}{l_{1}}+\frac{6E_{2}I_{2}d_{2}}{l_{2}}=0$
$ \int_{1}=y_{B}-y_{A}$
$-0.005-0$
$\int_{1}=-0.005$
$\int_{2}=y_{B}-y_{C}$
$=-0.05-0$
$\int_{2}=-0.005$
$0+2MB(6+5)+M_{c}5+\frac{6\times320.01\times2.67}{6}+\frac{6\times208.33\times2.5}{5}+\frac{6\times19530\times(-0.005)}{6}+\frac{6\times19530\times(-0.005)}{5}=0$
$22M_{B}+5M_{c}+1479.42-214.83=0$
$\underline{22M_{B}+rM_{c}=-1264.59}\tag{1}$
For B-C-D
$M_{B}(l_{1})+2M_{c}(l_{1}+l_{2})+M_{D}(l_{2})+\frac{6A_{1}x_{1}}{l_{1}}+\frac{6A_{2}x_{2}}{l_{2}}+\frac{6\int_{1}E_{1}I_{1}}{l_{1}}+\frac{6\int_{2}E_{2}I_{2}}{l_{2}}=0$
$\int_{1}=y_{c}-y_{B}$
$=0-(-0.005)$
$\int_{1}=0.005$
$\int_{2}=y_{C}-y_{D}$
=0-0
=0
$\underline{\int_{2}=0}$
$5M_{B}+2M_{c}(5+5)+0+\frac{6\times208.33\times2.5}{5}+\frac{6\times180\times2.67}{5}+\frac{6\times0.005\times19530}{5}+0=0$
$5M_{B}+20M_{c}+624.99+576.72+117.18=0$
$\underline{5M_{B}+20M_{C}=-1318.89}$\tag{2}
solving 1 & 2 we get
$M_{B}=-45kN.m$
$M_{C}=-54.68kN.m$
Reaction at $A=\underline{45.83kN}$
Reaction at $B=34.17+48.2=\underline{82.37kN}$
Reaction at $C=51.8+46.8=\underline{98.6}kN$
Reaction at $D=\underline{13.2kN}$