written 6.3 years ago by
msharvari99
• 0
|
•
modified 6.3 years ago
|
To find horizontal deflection at D, apply dummy force P=1 KN. [Horizontal towards right].
$
(i) \ Axial \ force \ (\overline{\rm N}) \ and \ bending \ moment \ (\overline{\rm M})
\\ (image 7) \\
Applying \ C.O.E:\\
\Sigma M_A=0 \\
x ^2 - M_A = 0\\
M_A = 2 KN.m\\
\Sigma F_Y = 0 \ (\uparrow +ve)\\
\Sigma F_X = 0 \ (\rightarrow +ve)\\
-H_A + 1 =0\\
H_A = 1 KN \\
Consider port AB:
\\ (image 8 )\\
B.M_A = -2KN.m\\
B.M_B= 1 \times 5 - 2 \ = 3 \ KN.m \\
Consider port BC:\\
\\ ( image 9)\\
Consider port CD:\\
\\image 10\\
$
(ii) \ Deflection \ of \ D \ [Considering \ effect \ of \ axial \ force] \
$
(a) Member AB:
$ t_c = 20 + ( \frac{30-20}{2} ) = 25 ^\circ C\
\triangle t = 30-20 = 10 ^\circ C\
\frac {\triangle t }{n} = \frac {10}{0.4} = 25\
A= - \frac{1}{2} \times 2 \times 2 + \frac{1}{2} \times 3 \times 3 = 2.5 m^2\
\overline{\rm N} = 0\
(b) Member \ BC :\
t_c = 15 + ( \frac{25-15}{2} ) = 20 ^\circ C\
\triangle t = 25-15 = 10 ^\circ C\
\frac {\triangle t}{n} = \frac {10}{0.4} = 25\
\overline{\rm N} = 1 KN\
A = 3 \times 4 = 12 m^ 2\
(c) Member \ CD :\
t_c = 15 + ( \frac{30-15}{2} ) = 22.5 ^\circ C\
\triangle t = 30-15 = 15 ^\circ C\
\frac {triangle t}{n} = \frac {15}{0.4} = 37.5\
\overline{\rm N} = 0 KN\
A = \frac{1}{2} \times 3 \times 3 = 4.5 m^ 2\
$
Using Mohr's Equation,
$ \
\Sigma \overline{\rm P_j}.\delta _j = \alpha_t \ \Sigma[\frac{\triangle t}{n} .\overline{\rm A} +t_c \overline{\rm N_L} ]\
1 \delta_D = 12 \times 10^{-6} [(25 \times 2.5) + 0 + ( 25 \times 12 + 20 \times 4 \times 1 ) + (37.5 \times 4.5)] \
\delta_D = 12 \times 10 ^{-6} [62.5 +380 +168.75]\
\delta_D = 12 \times 10 ^{-6} [611.25]\
\delta_D = 7.335 \times 10 ^{-3}\
\delta_D = 7.335 mm \rightarrow $ \\
$ (iii) \ Deflection \ at \ D \ [Neglecting \ effect \ of \ axial \ force]\
\delta_D = \alpha_t . \Sigma [ \frac{\triangle t}{h} . A ]\
\delta_D = 12 \times 10 ^{-6} [62.5 +380 +168.75]\
\delta_D = 12 \times 10 ^ {-6} [531.25]\
\delta_D = 6.375 \times 10 ^{-3} mm\
\delta_D = 6.375m(\rightarrow)
$ Answer