written 6.8 years ago by | • modified 3.0 years ago |
Subject: CMOS VLSI Design
Topic: Single Stage Amplifier
Difficulty: Medium
written 6.8 years ago by | • modified 3.0 years ago |
Subject: CMOS VLSI Design
Topic: Single Stage Amplifier
Difficulty: Medium
written 6.8 years ago by | • modified 6.8 years ago |
-> For $V_{in} \geq B_b-V_{Th}, M_1$ is OFF and $V_{out}=V_{DD}$
$\therefore I_D =\frac{1}{2}\mu_n\,C_{ox} \frac{W}{L}(V_b-V_{in}-V_{Th})^2 $
$V_{out}=V_{DD}-R_D\,I_D$
$\therefore V_{out}=V_{DD}-R_D \Big[ \frac{1}{2}\mu_n\,C_{ox} \frac{W}{L}(V_b-V_{in}-V_{Th})^2 \Big]$
Differentiating on both sides w.r.t $V_{in}$, we get,
$\frac{\partial V_{out}}{\partial V_{in}}=-\mu_n\,C_{ox} \frac{W}{L}(V_b-V_{in}-V_{Th})\,(-1-\frac{\partial V_{Th}}{\partial V_{in}})\,R_D$
$\hspace{1cm}$ But, $\frac{\partial V_{Th}}{\partial V_{in}}=\frac{\partial V_{Th}}{\partial V_{SB}}=\eta\,\hspace{2cm}......\eta=\frac{gm_b}{gm}$
$\therefore \,\,\frac{\partial V_{out}}{\partial V_{in}}=A_V=\mu_n\,C_{ox} \frac{W}{L}(V_b-V_{in}-V_{Th})\,(1+\eta)\,R_D$
$\therefore \, A_V=gm(1+\eta)\,R_D$