written 6.6 years ago by | • modified 2.8 years ago |
Subject: CMOS VLSI Design
Topic: CMOS analog building blocks
Difficulty: Medium
written 6.6 years ago by | • modified 2.8 years ago |
Subject: CMOS VLSI Design
Topic: CMOS analog building blocks
Difficulty: Medium
written 6.6 years ago by | • modified 6.6 years ago |
Basic current mirror :-
$I_{Ref}=I_{D_1}=\frac{1}{2}(\frac{W}{L})_1\mu_n C_{ox}(V_{GS}-V_{TH})^2.......(1)$
Similarly,
$I_{out}=I_{D_2}=\frac{1}{2}(\frac{W}{L})_2\mu_n C_{ox}(V_{GS}-V_{TH})^2...........(2)$
$\therefore from \ (1)\ \& \ (2)$
$I_{out}=\frac{(\frac{W}{L})_2}{(\frac{W}{L})_1}I_{Ref}$
Thus by adjusting the value of $(\frac{W}{L})$ ratio of both factor,we can get required value of O/P current
Drawbacks of Basic current mirror
CLM effects result in significant error.
$I_{D_1}=\frac{1}{2}\frac{W}{L}\mu_n C_{ox}(V_{GS}-V_{TH})^2(1+\lambda V_{DS_1})$
$I_{D_2}=\frac{1}{2}\frac{W}{L}\mu_n C_{ox}(V_{GS}-V_{TH})^2(1+\lambda V_{DS_2})$
$\therefore \frac{I_{D_2}}{I_{D_1}}=\frac{(\frac{W}{L})_2}{(\frac{W}{L})_1}\frac{(1+\lambda V_{DS_2})}{(1+\lambda V_{DS_1})}$
$\therefore$ to suppress effect of CLM, cascode CM is used.
Cascode:-
$V_b$ is chosen such that $V_x=V_y$ then $I_{out}$ tracks$ I_{Ref}$
Aim : $V_x=V_y$
$\therefore V_b=V_{GS_3}+V_x$
if $\frac{(\frac{W}{L})_3}{(\frac{W}{L})_4}=\frac{(\frac{W}{L})_2}{(\frac{W}{L})_1}$
then $V_{GS_3}=V_{GS_4} \& V_x=V_y$