written 2.9 years ago by
RakeshBhuse
• 3.2k
|
•
modified 2.9 years ago
|
Solution :
$$
\begin{array}{l}\text { Let, } m=\frac{\Sigma f_{i} x_{i}}{\sum f_{i}}=\frac{(0 \times 123)+(1 \times 59)+(2 \times 14)+(3 \times 3)+(4 \times 1)}{123+59+14+3+1}
\\
\therefore m=0.5 \text { and } N=200
\end{array}
$$
By poisson distribution formulae,
$$
\begin{array}{l}
P(X=x)=\frac{e^{-m} m^{x}}{x !} \\
P(X=0)=\frac{e^{-m} m^{0}}{0 !}=e^{-0.5} \times 1=0.6065
\end{array}
$$
Now, By poisson recurrance distribution
$$
\begin{aligned}
f(0)=N P(0) &=200 \times 0.6065\\
&=121.3 \\
&\approx 121 \\
f(1)=N P(1) &=200 \times e^{-0.5} \times 0.5 \\
&=60.65 \\
&\approx 61
\end{aligned}
$$
$$
\begin{aligned}
f(2)=N P(2) &=200 \times \frac{e^{-0.5}(0.5)^{2}}{2 !} \\
&=15.16 \\
& \approx 15\\
f(3)=N P(3) &=200 \times \frac{e^{-0.5}(0.5)^{3}}{3 !} \\
&=2.5272 \\
& \approx 3 \\
f(4)=N P(4) &=200 \times \frac{e^{-0.5}(0.5)^{4}}{4 !} \\
&=0.3159 \\
& \approx 0
\end{aligned}
$$
$$
\begin{array}{|c|c|c|c|c|c|}
\hline \text { No of deaths } & 0 & 1 & 2 & 3 & 4 \\
\hline \text { frequencies } & 121 & 61 & 15 & 3 & 0 \\
\hline
\end{array}
$$