1
886views
Find (i) k (ii) mean (iii) variance for the p.d.f

Subject: Applied Mathematics 4

Topic: Probability

Difficulty: Medium

f(x)=k(xx2),0x1.k>0 = 0 ,otherwise

1 Answer
0
4views

For continuous random variable

f(x)=1

For given problem

10f(x)dx=110k(xx2)=1k(x22x33)10=1k(1213)=1k(326)=1k=6

Mean

$$\begin{aligned} E(X) &=\int_{\infty}^{-\infty} x f(x) d x\\ &=\int_{0}^{1} x k\left(x-x^{2}\right) d x\\ &=k \int_{0}^{1}\left(x^{2}-x^{3}\right) d x\\ &=k\left(\frac{x^{3}}{3} - \frac{x^{4}}{4}\right)_{0}^{1}\\ &=k\left(\frac{1}{3}-\frac{1}{4}\right)\\ &=6\left(\frac{4-3}{12}\right)\\ &=\frac{1}{2}=0.5 …

Create a free account to keep reading this post.

and 4 others joined a min ago.

0
2views

For continuous random variable

f(x)=1

For given problem

10f(x)dx=110k(xx2)=1k(x22x33)10=1k(1213)=1k(326)=1k=6

Mean

$$\begin{aligned} E(X) &=\int_{\infty}^{-\infty} x f(x) d x\\ &=\int_{0}^{1} x k\left(x-x^{2}\right) d x\\ &=k \int_{0}^{1}\left(x^{2}-x^{3}\right) d x\\ &=k\left(\frac{x^{3}}{3} - \frac{x^{4}}{4}\right)_{0}^{1}\\ &=k\left(\frac{1}{3}-\frac{1}{4}\right)\\ &=6\left(\frac{4-3}{12}\right)\\ &=\frac{1}{2}=0.5 …

Create a free account to keep reading this post.

and 5 others joined a min ago.

Please log in to add an answer.