written 7.0 years ago by | modified 3.0 years ago by |
Subject: Applied Mathematics 4
Topic: Probability
Difficulty: Medium
f(x)=k(x−x2),0≤x≤1.k>0 = 0 ,otherwise
written 7.0 years ago by | modified 3.0 years ago by |
Subject: Applied Mathematics 4
Topic: Probability
Difficulty: Medium
f(x)=k(x−x2),0≤x≤1.k>0 = 0 ,otherwise
written 3.0 years ago by |
For continuous random variable
∫∞∞f(x)=1
For given problem
∫10f(x)dx=1∴∫10k(x−x2)=1∴k(x22−x33)10=1∴k(12−13)=1∴k(3−26)=1∴k=6
Mean
$$\begin{aligned} E(X) &=\int_{\infty}^{-\infty} x f(x) d x\\ &=\int_{0}^{1} x k\left(x-x^{2}\right) d x\\ &=k \int_{0}^{1}\left(x^{2}-x^{3}\right) d x\\ &=k\left(\frac{x^{3}}{3} - \frac{x^{4}}{4}\right)_{0}^{1}\\ &=k\left(\frac{1}{3}-\frac{1}{4}\right)\\ &=6\left(\frac{4-3}{12}\right)\\ &=\frac{1}{2}=0.5 …
written 3.0 years ago by |
For continuous random variable
∫∞∞f(x)=1
For given problem
∫10f(x)dx=1∴∫10k(x−x2)=1∴k(x22−x33)10=1∴k(12−13)=1∴k(3−26)=1∴k=6
Mean
$$\begin{aligned} E(X) &=\int_{\infty}^{-\infty} x f(x) d x\\ &=\int_{0}^{1} x k\left(x-x^{2}\right) d x\\ &=k \int_{0}^{1}\left(x^{2}-x^{3}\right) d x\\ &=k\left(\frac{x^{3}}{3} - \frac{x^{4}}{4}\right)_{0}^{1}\\ &=k\left(\frac{1}{3}-\frac{1}{4}\right)\\ &=6\left(\frac{4-3}{12}\right)\\ &=\frac{1}{2}=0.5 …