written 6.7 years ago by | • modified 2.8 years ago |
Subject : Structural Analysis 1
Topic : Unsymmetrical Bending
Difficulty : High
written 6.7 years ago by | • modified 2.8 years ago |
Subject : Structural Analysis 1
Topic : Unsymmetrical Bending
Difficulty : High
written 6.7 years ago by | • modified 6.6 years ago |
Here, $\alpha=30^\circ$ $ \therefore \sin\alpha=0.5\ \ \ \ \ \ \ \cos\alpha=0.866$
The momentsof inertia of th section are
$I_{XX}=\frac{100\times150^3}{12}=\underline{28125000\ mm^4}\\ I_{YY}=\frac{150\times100^3}{12}=\underline{12500000\ mm^4} $
$\tan\beta=\frac{I_X}{I_Y}\tan\alpha=\frac{28125000}{1250000}\tan30^\circ=1.30\\ \therefore \underline{\beta=52.43^\circ}$
By resolving moment @ X & Y axes:
$\sigma=\frac{M_xY}{I_x}+\frac{M_yX}{I_y}$ ---- (1)
$\therefore M_x=M\cos\alpha=(15\times10^6\times0.866)=1299000\ Nmm,$
Here, x=50 mm; y=75 mm. for all parts A,B,C,D
$\therefore M_x=M\cos\alpha=(15\times10^6\times0.866)=12990000\ Nmm$,
including compression at C & D & tension at A & B.
$M_y=M\sin\alpha=15\times10^6\times0.5=7500000$ Nmm,
including tension at C,B & compression at A,D
$\sigma_x=\frac{M_xy}{I_x}=\frac{12990000\times75}{28125000}=34.64\ N/mm^2\\ \sigma_y=\frac{M_yx}{I_y}=\frac{7500000\times50}{12500000}=30\ N/mm^2 $
Moment | Stress ($N/mm^2$) | Stress ($N/mm^2$) | Stress ($N/mm^2$) | Stress ($N/mm^2$) |
---|---|---|---|---|
A | B | C | D | |
$M_x$ | 34.64 | 34.64 | -34.64 | -34.64 |
$M_y$ | -30 | 30 | 30 | -30 |
Total | 4.64 | 64.64 | -4.64 | -64.64 |