written 6.7 years ago by | • modified 2.8 years ago |
Subject : Structural Analysis 1
Topic : Struts
Difficulty : High
written 6.7 years ago by | • modified 2.8 years ago |
Subject : Structural Analysis 1
Topic : Struts
Difficulty : High
written 6.7 years ago by | • modified 6.6 years ago |
Given data:
$ L=6m\\ D=300mm \\ d=250 mm\\ P=150\ kN\\ e=450 mm\\ t=25 mm\\ E=2\times10^5\ N/mm^2$
To find: Maximum & minimum stresses
$A=\frac{\pi}{4}(300^2-250^2)=\frac{\pi}{4}(27500)\\ \underline{A=21598.4\ mm^2}\\ \underline{E=2\times10^5\ N/mm^2}\\ I_{YY}\frac{\pi}{64}(300^4-250^4)=\frac{\pi}{64}(300^4-25^4)\\ I_{YY}=205.86\times10^6mm^4\\ \sigma_d=\frac{P}{A}=\frac{150\times10^3}{21598.4}\\ \underline{\sigma_d=6.95\ N/mm^2}\\ \sigma_b=\frac{M}{I}\times y=\frac{P\times e\times\bar{x}}{I_{YY}}=\frac{150\times10^3\times450\times150}{205.86\times10^6}\\ \underline{\sigma_b=49.18\ N/mm^2}\\ \sigma_{max}=\sigma_d+\sigma_b\\ =6.95+49.18\\ \underline{\sigma_{max}=56.13\ N/mm^2}\\ \sigma_{min}=\sigma_d-\sigma_b\\ =6.95-49.18\\ \underline{\sigma_{min}=-42.23\ N/mm^2} $