0
3.9kviews
Using conjugate beam method find slope at C & deflection at C for a cantilever beam as shown in figure.

Subject : Structural Analysis 1

Topic : Deflection of beam

Difficulty : HIgh

enter image description here

1 Answer
0
57views

enter image description here

1. Suppport reaction calculation

$\sum M_A=0(\circlearrowright+ve)[ For\ UDL\ only]\\ -M_A+12\times5\times\frac{5}{2}=0\\ \boxed{M_A=150\ kNm}\\ \\ \sum M_A=0(\circlearrowright+ve)[For\ point\ load]\\ -M_A+24\times2=0\\ \boxed{M_A=48\ kNm} $


2. Draw BMD $ [\circlearrowright| \circlearrowleft+ve]$

$B.M_A=150\ kNm [For\ UDL]\\ B.M_A=48\ kNm[For\ point\ load]\\B.M_B=12\times3\times\frac{3}{2}=\underline{54\ kNm} $

enter image description here


3.$\frac{M}{EI}$ diagram

$\underline{conjugate\ beam}$

enter image description here


3. Conjugate beam calculation

$\sum F_Y=0(\uparrow+ve)\\ v_c=Total\ load\\ load\ 1=2\times\frac{-27}{EI}=\frac{-54}{EI}\\ load\ 2=\frac{1}{3}\times\frac{-48}{EI}\times2=\frac{-32}{EI}\\ load\ 3=\frac{1}{2}\times\frac{-54}{EI}\times3=\frac{-54}{EI}\\ load\ 4=\frac{1}{2}\times2\times\frac{-24}{EI}=\frac{-24}{EI} \\v_c=\frac{-54-32-54-24}{EI}\\ \boxed{v_c=\frac{-164}{EI}}\\ \sum M @ c =0(\circlearrowright+ve)\\ M_c=load\times C.G$


$M_c$ load C.G
1 $\frac{-54}{EI}$ $3+\frac{3}{2}=4.5m$ $\frac{-216}{EI}$
2 $\frac{-32}{EI}$ $3+\left(\frac{3}{4}\times2\right)=4.5m$ $\frac{-144}{EI}$
3 $\frac{-54}{EI}$ $\frac{3}{4}\times3=2.25m$ $\frac{-121.5}{EI}$
4 $\frac{-24}{EI}$ $3+\left(\frac{2}{3}\times2\right)=4.333m$ $\frac{-103.99}{EI}$
$\sum =$ $\frac{-585.5}{EI}$


$\boxed{M_c=\frac{-585.5}{EI}} $


4. Slope & Deflection

$Q_c$ in real beam = S.F @ c in conjugate beam.

$Q_c=v_c=\frac{-164}{EI}\\ \boxed{Q_c=\frac{164}{EI}rad(\downarrow)} $

$y_c$ in real beam = B.M @ c in conjugate beam.

$ y_c=B.M@c\\ y_c=\frac{-585.5}{EI}\\ \boxed{y_c=\frac{585.5}{EI}}(\downarrow)$

Please log in to add an answer.