written 6.7 years ago by | • modified 2.8 years ago |
Subject : Structural Analysis 1
Topic : Deflection of beam
Difficulty : HIgh
written 6.7 years ago by | • modified 2.8 years ago |
Subject : Structural Analysis 1
Topic : Deflection of beam
Difficulty : HIgh
written 6.7 years ago by | • modified 6.6 years ago |
1. Suppport reaction calculation
$\sum M_A=0(\circlearrowright+ve)[ For\ UDL\ only]\\ -M_A+12\times5\times\frac{5}{2}=0\\ \boxed{M_A=150\ kNm}\\ \\ \sum M_A=0(\circlearrowright+ve)[For\ point\ load]\\ -M_A+24\times2=0\\ \boxed{M_A=48\ kNm} $
2. Draw BMD $ [\circlearrowright| \circlearrowleft+ve]$
$B.M_A=150\ kNm [For\ UDL]\\ B.M_A=48\ kNm[For\ point\ load]\\B.M_B=12\times3\times\frac{3}{2}=\underline{54\ kNm} $
3.$\frac{M}{EI}$ diagram
$\underline{conjugate\ beam}$
3. Conjugate beam calculation
$\sum F_Y=0(\uparrow+ve)\\ v_c=Total\ load\\ load\ 1=2\times\frac{-27}{EI}=\frac{-54}{EI}\\ load\ 2=\frac{1}{3}\times\frac{-48}{EI}\times2=\frac{-32}{EI}\\ load\ 3=\frac{1}{2}\times\frac{-54}{EI}\times3=\frac{-54}{EI}\\ load\ 4=\frac{1}{2}\times2\times\frac{-24}{EI}=\frac{-24}{EI} \\v_c=\frac{-54-32-54-24}{EI}\\ \boxed{v_c=\frac{-164}{EI}}\\ \sum M @ c =0(\circlearrowright+ve)\\ M_c=load\times C.G$
$M_c$ | load | C.G | |
---|---|---|---|
1 | $\frac{-54}{EI}$ | $3+\frac{3}{2}=4.5m$ | $\frac{-216}{EI}$ |
2 | $\frac{-32}{EI}$ | $3+\left(\frac{3}{4}\times2\right)=4.5m$ | $\frac{-144}{EI}$ |
3 | $\frac{-54}{EI}$ | $\frac{3}{4}\times3=2.25m$ | $\frac{-121.5}{EI}$ |
4 | $\frac{-24}{EI}$ | $3+\left(\frac{2}{3}\times2\right)=4.333m$ | $\frac{-103.99}{EI}$ |
$\sum =$ | $\frac{-585.5}{EI}$ |
$\boxed{M_c=\frac{-585.5}{EI}} $
4. Slope & Deflection
$Q_c$ in real beam = S.F @ c in conjugate beam.
$Q_c=v_c=\frac{-164}{EI}\\ \boxed{Q_c=\frac{164}{EI}rad(\downarrow)} $
$y_c$ in real beam = B.M @ c in conjugate beam.
$ y_c=B.M@c\\ y_c=\frac{-585.5}{EI}\\ \boxed{y_c=\frac{585.5}{EI}}(\downarrow)$