written 6.8 years ago by | modified 2.8 years ago by |
Use this diagram to calculate to maximum S.F and B.M at this section.
written 6.8 years ago by | modified 2.8 years ago by |
Use this diagram to calculate to maximum S.F and B.M at this section.
written 6.8 years ago by | • modified 6.6 years ago |
$ILD \hspace{1mm} for \hspace{1mm} S.F_c$
$1. Max \hspace{1mm} S.F_c:$
$(i) Maximum \hspace{1mm} +ve \hspace{1mm} SF \hspace{1mm} at \hspace{1mm} C:$
$\frac{0.6}{9}=\frac{y_1}{4}$
$y_1=0.267$
$Max \hspace{1mm} +ve S.F_c= 40 \times (\frac{5}{2}(0.6+0.267))$
$Max \hspace{1mm}+ve S.F_c= 86.7KN$
$(ii) Maximum \hspace{1mm} -ve \hspace{1mm} SF \hspace{1mm} at \hspace{1mm} C:$
$\frac{y_2}{1}=\frac{0.4}{6}$
$y_2=0.067$
$Max \hspace{1mm} -ve S.F_c= 40 \times [\frac{5}{2}(0.4+0.067)]$
$\hspace{10mm}= 46.7KN$
$2. Max \hspace{1mm} BM \hspace{1mm} at \hspace{1mm} C:$
$ I.L.D for BM_c$
$\frac{3.6}{9}=\frac{y_1}{6}=2.4$
$\frac{3.6}{6}=\frac{y_1}{4}=2.4$
$To \hspace{1mm} find \hspace{1mm} x \hspace{1mm} by \hspace{1mm} similar \hspace{1mm} triangle$
$\frac{x}{5-x}=\frac{6}{9}$
x=2m
$Max BM_c=40 \times [\frac{2}{2}(2.4+3.6)]+40 \times [\frac{3}{2}(3.6+2.4)]$
$Max BM_c= 600KN.m$