$1. Support \hspace{1mm} reaction \hspace{1mm} calcualation:$
$\sum M_a=0$
$(30*80*{\frac{80}{2}})-V_b*80=0$
$v_b=1200KN$
$\sum F_y=0$
$V_a-(30*80)+1200=0$
$V_a=1200KN$
$Taking \hspace{1mm} moment \hspace{1mm} about \hspace{1mm} central \hspace{1mm} point \hspace{1mm} C$
$BM_c=0$
$-H*8-((30*40)*{\frac{40}{2}})+V_a*40=0$
$H=3000KN$
$Maximum \hspace{1mm} tension \hspace{1mm} occurs \hspace{1mm} at \hspace{1mm} support $
$T_{max}=\sqrt{\left(V_a\right)^2 + \left(H\right)^2 }= \sqrt{\left(1200\right)^2 + \left(3000\right)^2 }$
$T_{max}=3231.09KN$
$CASE \hspace{1mm} 1: If \hspace{1mm} the \hspace{1mm} cable \hspace{1mm} is \hspace{1mm} supported \hspace{1mm} by \hspace{1mm} saddle, \hspace{1mm} the \hspace{1mm} anchor \hspace{1mm} cable \hspace{1mm} T_1 \hspace{1mm} is \hspace{1mm} given \hspace{1mm} by,$
$T_1cos\alpha=T_{max}cos\theta$
$Also, \hspace{1mm} we \hspace{1mm} know \hspace{1mm} that, $
$H=T_{max}cos\theta$
$\theta=\cos\,inverse[\frac{H}{T_{max}}]$
$\theta=\cos\,inverse[\frac{3000}{3231.1}]$
$\theta=21.80^\circ$
$T_1cos30^\circ=3231.09*cos21.80^\circ$
$T_1 = 3464.13 KN$
Vertical Force on Tower is given by
$= T_1sin\alpha + T_maxsin\theta$
$3464.13sin30^o + 3231.09 sin21.80$
$T_1=2931.98KN$
$CASE \hspace{1mm} 2: If \hspace{1mm} the \hspace{1mm} cable \hspace{1mm} is \hspace{1mm} on \hspace{1mm} pulley \hspace{1mm}, the \hspace{1mm} vertical \hspace{1mm} force \hspace{1mm} on \hspace{1mm} tower \hspace{1mm} is $
$T_{max}(sin\alpha+sin\theta)$
$=3231.09[sin30^\circ+sin21.80^circ)$
$=2815.46KN$
$Horizontal \hspace{1mm} force \hspace{1mm} on \hspace{1mm} tower $
$=T_{max}[cos\theta-cos\alpha]$
$=3231.09[cos21.80^\circ-cos30^\circ]$
$=201.85KN$