written 6.8 years ago by | • modified 2.8 years ago |
Subject: Structural Analysis 1
Topic: Deflection of Beams using Energy Method
Difficulty: High
written 6.8 years ago by | • modified 2.8 years ago |
Subject: Structural Analysis 1
Topic: Deflection of Beams using Energy Method
Difficulty: High
written 6.8 years ago by | • modified 6.6 years ago |
Analysis of truss due to given loading:
We have,
$AC=2\cos(30^\circ)=2\sqrt3\ m \\ \sum M_A=0\ gives(\circlearrowright+ve) \\ H_e\times2=40\times2\sqrt3 \\ \therefore \boxed{H_e=40\sqrt3\ kN\rightarrow} \\ \boxed{V_A=40\ kN\uparrow} \\ \boxed{H_a=40\sqrt3\ kN\rightarrow}$
P-Analysis
1. Joint C:
$\begin{align} &\sum F_Y=0(\uparrow+ve) \\& -40-P_{CD}\sin30=0 \\& P_{CD}=-80\ kN \\&\boxed{ P_{CD}= 80\ kN\ (C)} \\ \\&\sum F_X=0(\rightarrow+ve) \\& -P_{CD}\cos30-P_{CB}=0 \\& -(-80\cos30)-P_{CB}=-0 \\&\boxed{ P_{CB}= 40\sqrt3\ kN\ (T)} \end{align}$
2. Joint B:
$P_{BD}=0;\ P_{BA}=40\sqrt3\ kN\ (T)$
3. Joint D:
$P_{DA}=0;\ P_{DE}=80\ kN\ (C)$
4. Joint E
Resolving vertically
$P_{CA}=80\sin30^\circ \\ \boxed{P_{CA}=40\ kN\ (T)}$
To find the vertical deflection at C
K-Analysis:
Solve directly.
Member | P(kN) | K(kN) | l(kN) | A($mm^2$) | $\frac{Pkl}{A}$ |
---|---|---|---|---|---|
AB | $-40\sqrt3$ | $-\sqrt3$ | $1000\sqrt3$ | 1250 | 166.3 |
BC | $-40\sqrt3$ | $-\sqrt3$ | $1000\sqrt3$ | 1250 | 166.3 |
CD | 80 | 2 | 2000 | 2500 | 128 |
DE | 80 | 2 | 2000 | 2500 | 128 |
AE | -40 | -1 | 2000 | 1250 | 64 |
AD | 0 | 0 | 2000 | 1250 | 0 |
BD | 0 | 0 | 1000 | 1250 | 0 |
$\sum =$ | 652.6 |
$\therefore$ Vertical deflection of $C=y=\sum\frac{Pkl}{AE}=\frac{652.6}{200}=\underline{3.263\ mm}\ \underline{Ans.}$