0
4.2kviews
Find the vertical deflecttions of the Joint C of the loaded truss shown in fig. The cls area of members CD & DE are each $250mm^2$ & those of the other members are each $1250mm^2.$Take$E=200\ kN/mm^2$

Subject: Structural Analysis 1

Topic: Deflection of Beams using Energy Method

Difficulty: High

enter image description here

1 Answer
0
196views

Analysis of truss due to given loading:

We have,

$AC=2\cos(30^\circ)=2\sqrt3\ m \\ \sum M_A=0\ gives(\circlearrowright+ve) \\ H_e\times2=40\times2\sqrt3 \\ \therefore \boxed{H_e=40\sqrt3\ kN\rightarrow} \\ \boxed{V_A=40\ kN\uparrow} \\ \boxed{H_a=40\sqrt3\ kN\rightarrow}$


P-Analysis

enter image description here


1. Joint C:

enter image description here


$\begin{align} &\sum F_Y=0(\uparrow+ve) \\& -40-P_{CD}\sin30=0 \\& P_{CD}=-80\ kN \\&\boxed{ P_{CD}= 80\ kN\ (C)} \\ \\&\sum F_X=0(\rightarrow+ve) \\& -P_{CD}\cos30-P_{CB}=0 \\& -(-80\cos30)-P_{CB}=-0 \\&\boxed{ P_{CB}= 40\sqrt3\ kN\ (T)} \end{align}$


2. Joint B:

$P_{BD}=0;\ P_{BA}=40\sqrt3\ kN\ (T)$


3. Joint D:

$P_{DA}=0;\ P_{DE}=80\ kN\ (C)$


4. Joint E

Resolving vertically

$P_{CA}=80\sin30^\circ \\ \boxed{P_{CA}=40\ kN\ (T)}$

To find the vertical deflection at C

  • Remove the given load system & apply a vertical load of 1 kN at C


K-Analysis:

enter image description here

Solve directly.

Member P(kN) K(kN) l(kN) A($mm^2$) $\frac{Pkl}{A}$
AB $-40\sqrt3$ $-\sqrt3$ $1000\sqrt3$ 1250 166.3
BC $-40\sqrt3$ $-\sqrt3$ $1000\sqrt3$ 1250 166.3
CD 80 2 2000 2500 128
DE 80 2 2000 2500 128
AE -40 -1 2000 1250 64
AD 0 0 2000 1250 0
BD 0 0 1000 1250 0
$\sum =$ 652.6

$\therefore$ Vertical deflection of $C=y=\sum\frac{Pkl}{AE}=\frac{652.6}{200}=\underline{3.263\ mm}\ \underline{Ans.}$

Please log in to add an answer.