1
5.9kviews
Calculate the vertical & horizontal displacements at point C in the simple frame with uniform flexural rigidity as shown in fig. Use unit load method. Also draw the deflected profile of the frame.

Subject: Structural Analysis 1

Topic: Deflection of Beams using Energy Method

Difficulty: High

enter image description here

1 Answer
0
202views

1. Reaction

enter image description here

2. For horizontal deflection at C

enter image description here

3. For vertical deflection at C

enter image description here

Region origin limits Mu Mu Hor. Mu Vert.
AB A 0-4 $$8x-\frac{2x^2}{2}-20$$ $x-4$ $-2$
BC C 0-2 $-2x$ $-x$ $-x$

$\begin{align} &\Delta H_C= \int_0^4 (8x-x^2-20)(x-4)\frac{dx}{EI}+\int_0^2 (-2x)(0)\frac{dx}{EI} \\&\phantom{\Delta H_C}=\frac{1}{EI} \int_0^4 \left[8x^2-32x-x^3+4x^2-20x+80\right]dx \\&\phantom{\Delta H_C}=\frac{1}{EI} \int_0^4 \left[-x^3+12x^2-\frac{52x^2}{2}+80\right]dx \\& \Delta H_C=\frac{1}{EI} \left[ \frac{-x^4}{4}+\frac{12x^3}{3}-\frac{52x^2}{2}+80x \right]_0^4 \\& \boxed{ \Delta H_C=\frac{96}{EI}}\ (\rightarrow) \\ \\& \Delta V_C= \int_0^4 (8x-x^2-20)(-2) \frac{dx}{EI}+ \int_0^2 (-2x)(-x) \frac{dx}{EI} \\& \phantom{\Delta V_C}=\frac{1}{EI} \left[ \int_0^4 (-16x+2x^2+40)dx+\int_0^2 2x^2 dx \right] \\& \phantom{\Delta V_C}=\frac{1}{EI} \left[-8x^2-\frac{2x^3}{3}+40x \right]_0^4+\left[\frac{2x^3}{3} \right]_0^2 \\& \boxed{ \Delta V_C=\frac{80}{EI}}\ (\downarrow) \end{align}$

Please log in to add an answer.