written 6.9 years ago by | • modified 3.0 years ago |
Subject: Structural Analysis 1
Topic: Deflection of Beams using Energy Method
Difficulty: High
written 6.9 years ago by | • modified 3.0 years ago |
Subject: Structural Analysis 1
Topic: Deflection of Beams using Energy Method
Difficulty: High
written 6.9 years ago by | • modified 6.7 years ago |
1. Reaction
$\begin{align} &\sum M_A=0\ (\circlearrowright+ve) \\& 10\times3\times\frac{3}{2}+15\times3-V_D\times5=0 \\& \boxed{V_D=18\ kN\ (\uparrow)} \\ \\& \sum F_Y=0\ (\uparrow+ve) \\&V_A-15+18=0 \\& V_A=-3\ kN \\& \boxed{V_A=-3\ kN\ (\downarrow)} \\ \\& \sum F_X=0\ (\rightarrow+ve) \\&H_A=10\times3=0 \\&H_A=-30\ kN \\& \boxed{H_A=-30\ kN\ (\leftarrow)} \end{align}$
2. Table: [$\circlearrowright|\circlearrowleft+ve$]
Region | origin | Limit | Mu | Mu(H) | EI |
---|---|---|---|---|---|
AB | A | 0-3 | $30x-10\times x\times\frac{x}{2}=30x-5x^2$ | 1.x | EI |
BE | B | 0-3 | $30\times3-10\times\frac{3^2}{2}-3x$ | 1$\times$3 | EI |
EC | C | 0-2 | 18x | 1$\times$2 | EI |
CD | D | 0-2 | 0 | 1x | EI |
$ \left\{\Delta D_H= \int_{0}^{l}\frac{Mu.Mu(H)}{EI} dx \right\} \ \underline{formula}\\ \Delta D_H=\frac{1}{EI}[ \int_{0}^{3}(30x-5x^3).x\ dx+\int_{0}^{3}(45-3x).3\ dx+\int_{0}^{3}(18x).2\ dx] \\ \Delta D_H= \frac{1}{EI}\left[\left( \frac{30x^3}{3}-\frac{5x^4}{4}\right)_0^3+\left(135x-\frac{9x^2}{2}\right)_0^3+\left(36\frac{x^2}{2}\right)_0^2\right]\\=\frac{605.25}{EI} \ [EI \ constant] \\ \boxed{\Delta D_H=\frac{605.25}{EI}} \ \underline{Ans.}$