0
14kviews
Two 20 deg involute spur gears have a module of 10 mm. The addendum is one module. The larger gear has 50 teeth and the pinion 13 teeth.

Does the interference occur? If it occurs, to what value should the pressure angle be changed to eliminate interference?


Subject: Kinematics of Machinery

Topic: Gears and Gear Trains

Difficulty: High

1 Answer
2
2.1kviews

Given $\phi= 20^{\circ}$; T=50; m=10 mm, t=13

Addendum = 1m= 10 mm

R= mt/2=$\frac{10times50}{2} = 250 mm, R_{a}= 250+10=260 mm$

r= mt/2=$\frac{10times13 }{2 }= 65 mm$

$R_{a max}=\sqrt{(250\cos\phi)^{2}+(R\sin\phi + r \sin\phi)^{2}}$

$=\sqrt{(250\cos 20^{\circ})^{2}+(250\sin 20^{\circ} + 65 \sin 20^{\circ})^{2}}$

$=\sqrt{(250\cos 20^{\circ})^{2}+(315\sin 20^{\circ})^{2}}=258.45 mm$

The actual addendum radius $R_{a}$ is more than the maximum value $R_{a max}$, therefore, interference occurs. The new value of $\phi$ can be found by taking $R_{a max}$ equal to $R_{a}$.

i.e $260=\sqrt{(250\cos \phi)^{2}+(315\sin \phi)^{2}}$

$(260)^{2}=(250)^{2}\cos^{2}\phi+(315)^{2}(1-\cos^{2}\phi)$

$=(250)^{2}\cos^{2}\phi+(315)^{2}-(315)^{2}\cos^{2}\phi)$

Or $\cos^{2}\phi=\frac{(315)^{2}-(260)^{2}}{(315)^{2}-(250)^{2}}=0.861$

Or $\cos\phi=0.928$

$\phi=21.88^{\circ}$ or $21^{\circ}52'$

Thus , if the pressure angle is increased to 21$^{\circ}$52’,the interference is avoided.

Please log in to add an answer.