written 6.7 years ago by
teamques10
★ 68k
|
•
modified 6.5 years ago
|
P= 7.5 kw =7500 w; d =1.2 m; N =250rpm. ;$\theta$ =165$^{\circ}$ =165 ×($\pi$/180) =2.88 rad; $\mu$ =0.3 ; $\sigma$ =1.5 M$P_{a}$ = 1.5×10$^{6}$ N/$m^{2}$ ; $\rho$ = 1 Mg//$m^{3}$ =1 ×10/$^{6}$ g//$m^{3}$ =1000 kg//$m^{3}$ ;t = 10 mm =0.01 m.
Let $b$ =width of the belt in meters,
$T_{1} $ =Tension in the tight side of the belt in N, and
$T_{2} $ =Tension in the slack side of the belt in N.
We know that velocity of the belt,
$ν =\frac{\pi dN}{60}=\frac{\pi\times 1.2 \times 250}{60}$ = 15.71 m/s.
and power transmitted (P),
7500 =$(T_{1} –T_{2})ν = (T_{1} –T_{2})$ 15.71
$T_{1} –T_{2} $ = 7500/15.71 = 477.4 N. …(i)
We know that
$2.3log(\frac {T_{1}}{T_{2}}) =\mu\theta $ =0.3×2.88 =0.864
$log(\frac {T_{1}}{T_{2}})$=0.864/2.3
or $\frac {T_{1}}{T_{2}} $ =2.375 ….(ii) …(Taking antilog of 0.3756)
From equation (i) and (ii) $ T_{1} $ =824.6 N $T_{2} $ =347.2 N.
We know that mass of the belt per meter length,
m = area × length × density =b.t.l.p
= b×0.01×1×1000 =10b kg
Centrifugal tension,
$T_{C} = mν^{2} =10b(15.71)^{2} $ =2468b N
And maximum tension in the belt,
T =$\sigma$b.t =1.5×10$^{6}$ × b ×0.01 =15000b N
We know that
$T =T_{1} +T_{C} $ or 15000b =824.6 +2468b
15000b -2468b =824.6 or 12532b =824.6
b =824.6/12532 =0.0658 m = 65.8 mm.