written 6.7 years ago by
teamques10
★ 68k
|
•
modified 6.7 years ago
|
Given :- $d_{1}$ = 1 m; $N_{1}$ = 200 rpm; $d_{2}$ = 2.25 m; $\sigma_{1}$ =1.4 $MP_{a}$=1.4 ×106 N/m$^2$ , $\sigma_{2}$ =0.5 $MP_{a}$=0.5 ×106 N/m$^2$ ; E= 100 $MP_{a}$=100×106 N/m$^2$,
Let $N_{2}$ = speed of the driven pulley.
Neglecting creep, we know that
$\frac{N_{2}}{N_{1}}$ = $\frac{d_{1}}{d_{2}}$ or $N_{2}$ = $N_{1}\frac{d_{1}}{d_{2}}$ = 200 × (1/2.25) = 88.9 rpm.
Consider creep, we know that
$\frac{N_{2}}{N_{1}}$ = $\frac{d_{1}}{d_{2}}\times \frac{(E+\sigma_{2})}{(E+\sigma_{1})}$
$N_{2}=200\times(\frac{1}{2.25})\times\frac{(100\times 10^{6}+\sqrt{0.5}\times 10^{6})}{(100\times 10^{6}+\sqrt{1.4}\times 10^{6})}$ = 88.7 rpm.
Speed lost by driven pulley due to creep,
= 88.9-88.7 = 0.2 rpm.