0
676views
Explain inertia matching for selection of actuator.
1 Answer
2
4views

Inertia matching

  • Motor connected to load via coupling medium as shown below

  • Let JM =Moment of inertia of motor

  • Let J, Moment of inertia of load

1

  • Then if inertia of these two component will get matched then energy dissipation in the motor will get decrease.

i.e. Efficiency of motor will get increases

  • Coupling medium may be

a) Gear transmission

b) Belt and pulley transmission

c) Lead screw drive

  • To discuss inertia matching cons connected to the load via gęar mechanism as shown in fig Np = No. of teeth present on motor pinion a motor

    N = No. of teeth present on gear

1

  • The parameters related with the load are OL, T, JL.

  • Load is connected to motor via coupling medium.

  • This parameter will get reflected at the shaft of motor.

  • These reflected parameter are indicated by 0L, T'L, J'L.

• The reflected parameters on the motor related with parameter of load depending upon gear ratio (N) as follow.

JL=Jϕ/N2TL=TL/NθL=NθL

  • We know that, energy dissipated in motor during time tc is given by

Wc=RK2τ[λJ2τθ2t3c+T2Ltc]

Wc=RK2T[λθ2t3c][J2T+tcT2Lλθ2]

- Similarly, energy dissipated in motor with Gear Transmission with reflected parameters during time tc is given by.

Wc=RK2T[λθ2t3c][J2T+tcT2Lλθ2]

  • Where Jr is Motor total moment of inertia
  • JJ = JM +J'i

Wc=RK2T[λθ12Lt3c][(JM+JL)2+t4cT12Lλθ12L]

Wc=RK2τ[λN2θ2Lt3c][(Jμ+PLN2)2+t4cT2LN2λN2θ2L]Wc=RK2τ[λN2θ2Lt3c][J2L(JμJL+1N2)2+t4cT2LλN4θ2L]

Wc=RK2r[λN2θ2Lt3c][J2L(JMJL+1N2)2+tcT2LλN4θ2L]Wc=RK2t[λJ2Lθ2Lt3c][N2(JM+1JL)2N2+t4cT2LλN2θ2LJ2L]

Let γ=[tιcT2Lλθ2tJ2L]

Wc=RK2τ[λJ2Lθ2Lt3c][N2(JMJL+1N2)2+γN2]

As energy dissipation in motor depends upon gear ratio N. Differentiating above bracketed term w.r.t to N? & equate to it zero so as to get optimum gear ratio N, that minimizes power dissipation Wc in motor

ddN2[N2(JMJL+1N2)2+γN2]=0

ddN2[N2(JMJL)2+N2(1N4)+N2(2×JMJL×1N2)+γN2]=0

ddN2[N2(JMJL)2+N2(1N4)+N2(2×JMJL×1N2)+γN2]=0ddN2[N2(JMJL)2+(1N2)+(2×JMJL)+γN2]=0ddN2[N2(JMJL)2+(1+γN2)+(2×JMJL)]=0(JMJL)2(1+γN40)+0=0

(JMJL)2(1+γN40)+0=0(JMJL)2=(1+γN40)JMJL=1+γN20

(JMJL)2(1+γN4)+0=0

(JMJL)2=(1+γN40)
If TL=0 then γ=0 JMJL=1+γN20JMJL=1N20N0=JLJM
JL=JMN2 OR JM=JLN2

Please log in to add an answer.