written 3.0 years ago by |
Inertia matching
Motor connected to load via coupling medium as shown below
Let JM =Moment of inertia of motor
Let J, Moment of inertia of load
- Then if inertia of these two component will get matched then energy dissipation in the motor will get decrease.
i.e. Efficiency of motor will get increases
- Coupling medium may be
a) Gear transmission
b) Belt and pulley transmission
c) Lead screw drive
To discuss inertia matching cons connected to the load via gęar mechanism as shown in fig Np = No. of teeth present on motor pinion a motor
N = No. of teeth present on gear
The parameters related with the load are OL, T, JL.
Load is connected to motor via coupling medium.
This parameter will get reflected at the shaft of motor.
These reflected parameter are indicated by 0L, T'L, J'L.
• The reflected parameters on the motor related with parameter of load depending upon gear ratio (N) as follow.
J′L=Jϕ/N2T′L=TL/Nθ′L=NθL
- We know that, energy dissipated in motor during time tc is given by
Wc=RK2τ[λJ2τθ2t3c+T2Ltc]
Wc=RK2T[λθ2t3c][J2T+t∧cT2Lλθ2]
Wc=RK2T[λθ2t3c][J2T+t∧cT2Lλθ2]
- Where Jr is Motor total moment of inertia
- JJ = JM +J'i
Wc=RK2T[λθ12Lt3c][(JM+J′L)2+t4cT12Lλθ12L]
Wc=RK2τ[λN2θ2Lt3c][(Jμ+PLN2)2+t4cT2LN2λN2θ2L]Wc=RK2τ[λN2θ2Lt3c][J2L(JμJL+1N2)2+t4cT2LλN4θ2L]
Wc=RK2r[λN2θ2Lt3c][J2L(JMJL+1N2)2+tcT2LλN4θ2L]Wc=RK2t[λJ2Lθ2Lt3c][N2(JM+1JL)2N2+t4cT2LλN2θ2LJ2L]
Wc=RK2τ[λJ2Lθ2Lt3c][N2(JMJL+1N2)2+γN2]
ddN2[N2(JMJL+1N2)2+γN2]=0
ddN2[N2(JMJL)2+N2(1N4)+N2(2×JMJL×1N2)+γN2]=0
ddN2[N2(JMJL)2+N2(1N4)+N2(2×JMJL×1N2)+γN2]=0ddN2[N2(JMJL)2+(1N2)+(2×JMJL)+γN2]=0ddN2[N2(JMJL)2+(1+γN2)+(2×JMJL)]=0(JMJL)2−(1+γN40)+0=0
(JMJL)2−(1+γN40)+0=0(JMJL)2=(1+γN40)JMJL=√1+γN20
(JMJL)2−(1+γN4∘)+0=0