written 6.8 years ago by | • modified 2.8 years ago |
Determine
1) The horizontal thrust
2) The moment,radial shear and normal thrust at a section 6m from the left hand support
3) Draw B.M.D
written 6.8 years ago by | • modified 2.8 years ago |
Determine
1) The horizontal thrust
2) The moment,radial shear and normal thrust at a section 6m from the left hand support
3) Draw B.M.D
written 6.8 years ago by | • modified 6.6 years ago |
Note: Since the arch is symmetrical h=10m
1) $Rx^n$ and horizontal thrust
$\sum M_A = 0 (\circlearrowleft+ve)$
$45 \times 10 \times \frac{10}{2} - V_B \times 20 = 0$
$\boxed{V_B = 112.5 KN}$
$\sum F_y = 0 (\uparrow +ve)$
$V_A - 45 \times 10 + 112.5 = 0$
$\boxed{V-A = 337.5 KN}$
Since C is an internal hinge
Consider part CB
$BM_c = 0$
$112.5 \times 10 - H \times 10 =0$
$\boxed{H = 112.5KN}$
2) B.M, Radial shear and normal thrust:
Consider portion AC:
$BM_D = 337.5 \times 6 - 112.5xy - 45 \times 6 \times \frac{6}{2}$ ------- (1)
But,
$y = \sqrt{R^2 - x^2} - R+h$
Considering C as origin:
$R = \frac{l^2}{8h} + \frac{h}{2} = 10$
$x = 4m$ From C
$y = \sqrt{10^2 - 4^2} - 10+10$
$y = 9.16m$
Putting in eqn (1):
$BM_D = 337.5 \times 6 - 112.5 \times 9.16 - 45 \times 6 \times \frac{6}{2}$
$\boxed{B.M_D = 184.5 KN}$ [Sagging]
Consider portion BC
$B.M_E = 112.5 \times (10 - x) - 112.5 xy$ - (1)
$M_E$ to be Maximum $\frac{d}{dx} M_E = 0$
$y = \sqrt{10^2 - x^2} - 10 + 10$
$1125 - 112.5x - 112.5 \times (\sqrt{10^2 - x^2} - 10 + 10)$
$-112.5 + \frac{112.5}{\sqrt{10^2 - x^2}} = 0$
By solving x = 7.07 m from C
Put x = 7.07 m in equation (1)
$112.5 \times (10 - x) - 112.5 xy$
$112.5 \times (10 - 7.07) - 112.5 \sqrt{10^2 - 7.07^2}$
$ = -465.99 KN.m$
$BM_E = 465.99 KN.m$ - [Hogging]
3) Radial Shear and Normal thrust:
$N_T = H cos\theta + v sin\theta$
$N_T = 112.5 cos(23.65) + 67.5 sin(23.65)$
$N_T = 130 KN$
$F = Vcos\theta - Hsin\theta$
$F = 67.5 cos(23.65) - 112.5 sin(23.65)$
$F = 16.8 KN$
$V = 337.5 - 45 \times 6 = 67.5 KN$
$H = 112.5 KN$
$tan\theta = \frac{dy}{dx} = \frac{x}{y} = \frac{4}{9.12}$
$tan\theta = 0.438$
$\theta = tan^{-1}(0.438) = 23.65^\circ$
4) B.M.D