0
1.1kviews
Prove that from 3 hing symmetrical parabolic arch carring UDL on entire span the BM at every section is 0.
1 Answer
written 6.8 years ago by | • modified 6.6 years ago |
$V_A = V_B = \frac{wl}{2}$
B.M at C
$B.M_c = 0$
$\frac{wl}{2} \times (\frac{l}{2}) - H \times h - \frac{wl}{2} \times \frac{l}{4} = 0$
$hH = \frac{wl^2}{4} - \frac{wl^2}{8} = \frac{2wl^2}{8} - \frac{wl^2}{8}$
$\boxed{H = \frac{wl^2}{8h}}$
Consider part (xA)
$B.M_x = \frac{wl}{2} x - \frac{wl^2}{8h}y - wx.\frac{x}{2}$
But we know that $y= \frac{4h}{l^2}x(l-x) = \frac{4h}{l^2}(lx - x^2)$
$\frac{wl}{2} x - \frac{wl^2}{8h} \times \frac{4h}{l^2} (lx - x^2) - \frac{wx^2}{2}$
$\frac{wl}{2}x - \frac{w}{2}(lx - x^2) - \frac{wx^2}{2}$
$\frac{wlx}{2} - \frac{wlx}{2} + \frac{wx^2}{2} - \frac{wx^2}{2} = 0$
Hence prove that BM at every section is 0.